References
- Nash, J., Lambert, L. and Deakin, M. (1994) Histamine H2-receptor antagonists in peptic ulcer disease. Evidence for a prophylactic use. Drugs, 47, 862-871. https://doi.org/10.2165/00003495-199447060-00002
- Blaser, M.J. (2006) Who are we? Indigenous microbes and the ecology of human disease. EMBO Rep., 7, 956-960. https://doi.org/10.1038/sj.embor.7400812
- Malfertheiner, P., Megraud, F., O'Morain, C.A., Atherton, J., Axon, A.T., Bazzoli, F., Gensini, G.F., Gisbert, J.P., Grahan, D.Y., Rokkas, T., El-Omar, E.M. and Kuipers, E.J. (2012) The European Helicobacter Study Group. Management of Helicobacter pylori infection-the maastricht IV/Florence consensus report. Gut, 61, 646-664. https://doi.org/10.1136/gutjnl-2012-302084
- Kong, W.J., Zhao, Y.L., Xiao, X.H., Wang, J.B., Li, H.B., Li, Z.L., Jin, C. and Liu, Y. (2009) Spectrum-effect relationshios between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis. Anal. Chim. Acta, 634, 279-285. https://doi.org/10.1016/j.aca.2009.01.005
- Jung, H.A., Min, B.S., Yokozawa, T., Lee, J.H., Kim, Y.S. and Choi, J.S. (2009) Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 32, 1433-1438. https://doi.org/10.1248/bpb.32.1433
- Liu, F. and Ng, T.B. (2000) Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci., 66, 725-735. https://doi.org/10.1016/S0024-3205(99)00643-8
- Kim, J.M., Jung, H.A., Choi, J.S. and Lee, N.G. (2010) Identification of anti-inflammotory target genes of Rhizoma coptidis extract in lipopolysaccaharide-stimulated RAW264.7 murine macrophage-like cells. J. Ethnopharmacol., 130, 354-362. https://doi.org/10.1016/j.jep.2010.05.022
- Choi, Y.Y., Kim, M.H., Cho, I.H., Kim, J.H., Hong, J., Lee, T.H. and Yang, W.M. (2013) Inhibitory effect of Coptis chinensis on inflammation in LPS-induced endotoxemia. J. Ethnopharmacol., 149, 506-512. https://doi.org/10.1016/j.jep.2013.07.008
- Jung, H.A., Yoon, N.Y., Bae, H.J., Min, B.S. and Choi, J.S. (2008) Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch. Pharm. Res., 31, 1405-1412. https://doi.org/10.1007/s12272-001-2124-z
- Jung, J., Lee, J.H., Bae, K.H. and Jeong, C.S. (2011) Anti-gastric actions of eugenol and cinnamic acid isolated from Cinnamomi Ramulus. Yakugaku Zasshi, 131, 1103-1110. https://doi.org/10.1248/yakushi.131.1103
- Jung, J., Bae, K.H. and Jeong, C.S. (2013) Anti-helicobactoer pylori and antiulcerogenic activities of the root cortex of Paeonia suffruticosa. Biol. Pharm. Bull., 36, 1535-1539. https://doi.org/10.1248/bpb.b13-00225
- Jia, Y.T., Wei, W., Ma, B., Xu, Y., Liu, W.J., Wang, Y., Lv, K.Y., Tang, H.T., Wei, D. and Xia, Z.F. (2007) Activation of p38 MAPK by reactive oxygen species is essential in a rat model of stress-induced gastric mucosal injury. J. Immunol., 179, 7808-7819. https://doi.org/10.4049/jimmunol.179.11.7808
- Schinella, G.R., Tournier, H.A., Prieto, J.M., Mordujovich de Buschiazzo, P. and Rios, J.L. (2002) Antioxidant activity of anti-inflammatory plant extracts. Life Sci., 70, 1023-1033. https://doi.org/10.1016/S0024-3205(01)01482-5
- Yokozawa, T., Ishida, A., Kashiwada, Y., Cho, E.J., Kim, H.Y. and Ikeshiro, Y. (2004) Coptidis Rhizoma: protective effect against peroxynitrite-induced oxidative damage and elucidation of its active components. J. Pharm. Pharmacol., 56, 547-556. https://doi.org/10.1211/0022357023024
- Zhang, Q., Piao, X.L., Piao, X.S., Lu, T., Wang, D. and Kim, S.W. (2011) Protective effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol., 49, 61-69. https://doi.org/10.1016/j.fct.2010.09.032
- Bae, E.A., Han, M.J., Kim, N.J. and Kim, D.H. (1998) Anti-Helicobacter pylori activity of herbal medicines. Biol. Pharm. Bull., 21, 990-992. https://doi.org/10.1248/bpb.21.990
- Li, B., Liu, H.R., Pan, Y.Q., Jiang, Q.S., Shang, J.C., Wan, X.H., He, B.C., Yang, J.Q. and Zhou, Q.X. (2006) Protective effects of total alkaloids from rhizoma Coptis chinensis on alcohol-induced gastric lesion in rats. Zhongguo Zhong Yao Za Zhi, 31, 51-54.
Cited by
- Palmatine from Mahonia bealei attenuates gut tumorigenesis in ApcMin/+ mice via inhibition of inflammatory cytokines vol.14, pp.1, 2016, https://doi.org/10.3892/mmr.2016.5285
- In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1310-y
- Cationic lipid emulsions as potential bioadhesive carriers for ophthalmic delivery of palmatine vol.33, pp.8, 2016, https://doi.org/10.1080/02652048.2016.1248512
- Inhibition of Helicobacter pylori and Its Associated Urease by Palmatine: Investigation on the Potential Mechanism vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0168944
- Coptis Chinensis affects the function of glioma cells through the down-regulation of phosphorylation of STAT3 by reducing HDAC3 vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-2029-0
- Gastroprotective effect of palmatine against acetic acid-induced gastric ulcers in rats vol.71, pp.1, 2017, https://doi.org/10.1007/s11418-016-1057-2
- Simultaneous determination of six coptis alkaloids in urine and feces by LC-MS/MS and its application to excretion kinetics and the compatibility mechanism of Jiao-Tai-Wan in insomniac rats vol.32, pp.8, 2018, https://doi.org/10.1002/bmc.4248