DOI QR코드

DOI QR Code

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Received : 2013.12.19
  • Accepted : 2014.03.17
  • Published : 2014.03.31

Abstract

Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.

Keywords

References

  1. Teicher, B.A. and Andrews, P.A. (2004) Anticancer drug development guide; preclinical screening, clinical trials, and approval (2nd edition), Humana Press, New Jersey, pp. 99-123.
  2. Cheon, D.J. and Orsulic, S. (2011) Mouse models of cancer. Annu. Rev. Phytopathol., 6, 95-119. https://doi.org/10.1146/annurev.pathol.3.121806.154244
  3. Suggitt, M. and Bibby, M.C. (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res., 11, 971-981.
  4. Frese, K.K. and Tuveson, D.A. (2007) Maximizing mouse cancer models. Nat. Rev. Cancer, 7, 645-658.
  5. Sharpless, N.E. and Depinho, R.A. (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discovery, 5, 741-754. https://doi.org/10.1038/nrd2110
  6. Olive, K.P. and Tuveson, D.A. (2006) The use of targeted mouse models for pre-clinical testing of novel cancer therapeutics. Clin. Cancer Res., 12, 5277-5287. https://doi.org/10.1158/1078-0432.CCR-06-0436
  7. Kucherlapati, R. (2012) Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin. Cancer Res., 18, 625-630. https://doi.org/10.1158/1078-0432.CCR-11-2021
  8. Peterson, J.K. and Houghton, P.J. (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer, 40, 837-844. https://doi.org/10.1016/j.ejca.2004.01.003
  9. Firestone, B. (2010) The challenge of selecting the 'right' in vivo oncology pharmacology model. Curr. Opin. Pharmacol., 10, 391-396. https://doi.org/10.1016/j.coph.2010.06.012
  10. Jung, J., Park, S.J., Chung, H.K., Kang, H.W., Lee, S.W., Seo, M.H., Park, H.J., Song, S.Y., Jeong, S.Y. and Choi. E.K. (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 84, e77-83. https://doi.org/10.1016/j.ijrobp.2012.02.030
  11. Choi, J., Kim, H.Y., Ju, E.J., Jung, J., Park, J., Chung, H.K., Lee, J.S., Lee, J.S., Park, H.J., Song, S.Y., Jeong, S.Y. and Choi, E.K. (2012) Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials, 33, 4195-4203. https://doi.org/10.1016/j.biomaterials.2012.02.022
  12. Jung, J., Kim, M.S., Park, S.J., Chung, H.K., Choi, J., Park, J., Jin, D.H., Song, S.Y., Park, H.J., Lee, D.S., Jeong, S.Y. and Choi, E.K. (2012) Enhancement of radiotherapeutic efficacy by paclitaxel-loaded pH-senstivie block copolymer micelles. J. Nanomater., 2012, 1-5.
  13. Dorr, R.T., Wisner, L., Smulitis, B.K., Landowski, T.H. and Remers, W.A. (2012) Anti-tumor activity and mechanism of action for a cyanoaziridine-derivative, AMP423. Cancer Chemother. Pharmacol., 69, 1039- 1049. https://doi.org/10.1007/s00280-011-1784-8
  14. Jeong, S.Y., Park, S.J., Yoon, S.M., Jung, J., Woo, H.N., Yi, S.L., Song, S.Y., Park, H.J., Kim, C., Lee, J.S., Lee, J.S. and Choi, E.K. (2009) Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. J. Controlled Release, 139, 239-245. https://doi.org/10.1016/j.jconrel.2009.07.007
  15. Saxena, R., Chandra, V., Manohar, M., Hajela, K., Debnath, U., Prabhakar, Y.S., Saini, K.S., Konwar, R., Kumar, S., Megu K., Roy B.G. and Dwivede, A. (2013) Chemotherapeutic potential of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran in estrogen receptor-negative breast cancer cells: Action via prevention of EGFR activation and combined inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 pathways. PLoS One, 8, e66246. https://doi.org/10.1371/journal.pone.0066246
  16. Jung, J., Matsuzaki, T., Tatematsu, K., Okajima, T., Tanizawa, K. and Kuroda, S. (2008) Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials. J. Controlled Release, 126, 255-264. https://doi.org/10.1016/j.jconrel.2007.12.002
  17. Hsu, A.R., Hou, L.C., Veeravaqu, A., Greve, J.M., Vogel, H., Tse, V. and Chen, X. (2006) In vivo near-infrared fluorescence imaging of integrin alphaveta3 in an orthotopic glioblastoma model. Mol. Imaging Biol., 8, 315-323. https://doi.org/10.1007/s11307-006-0059-y
  18. Ho, K.S., Poon, P.C., Owen, S.C. and Shoichet, M.S. (2012) Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer; a comparison of ectopic and orthotopic tumours. BMC Cancer, 12, 579. https://doi.org/10.1186/1471-2407-12-579
  19. Nozaki, S., Sissons, S., Chien, D.S. and Sledge, G.W. Jr. (2003) Activity of biphenyl matrix metalloproteinase inhibitor BAY 12-9566 in a human breast cancer orthotopic model. Clin. Exp. Metastasis, 20, 407-412. https://doi.org/10.1023/A:1025473709656
  20. Fidler, I.J. (2003) The pathogenesis of cancer metastasis; the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer, 3, 453-458. https://doi.org/10.1038/nrc1098
  21. Francia, G., Cruz-Munoz, W., Man, S., Xu, P. and Kerbel, R.S. (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer, 11, 135-141. https://doi.org/10.1038/nrc3001
  22. Banyard, J., Chung, I., Wilson, A.M., Vetter, G., Le Bechec, A., Bielenberg, D.Z. and Zetter, B.R. (2013) Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model. Sci. Rep., 3, 3151. https://doi.org/10.1038/srep03151
  23. Yano, S., Muguruma, H., Matsumori, Y., Goto, H., Nakataki, E., Edakuni, N., Tomimoto, H., Kakiuchi, S., Yamamoto, A., Uehara, H., Ryan, A. and Sone, S. (2005) Antitumor vascular strategy for controlling experimental metastatic spread of human small-cell lung cancer cells with ZD6474 in natural killer cell-depleted severe combined immunedeficient mice. Clin. Cancer Res., 11, 8789-8798. https://doi.org/10.1158/1078-0432.CCR-05-0674
  24. Ma, H., Li, X., Yang, Z., Okuno, S., Kawaguchi, T., Yagi, S., Bouvet, M. and Hoffman, R.M. (2011) High antimetastatic efficacy of MEN4901/T-0128, a novel camptothecin carboxymethyldextran conjugate. J. Surg. Res., 171, 684-690. https://doi.org/10.1016/j.jss.2010.05.066
  25. Wong, C.Y., Helm, M.A., Kalb, R.E., Helm, T.N. and Zeitouni, N.C. (2013) The presentation, pathology, and current management strategies of cutaneous metastasis. N. Am. J. Med. Sci., 5, 499-504. https://doi.org/10.4103/1947-2714.118918
  26. Du, L., Xu, W.T., Fan, Q.M., Tu, B., Shen, Y., Yan, W., Tang, T.T. and Wang, Y. (2012) Tumorigenesis and spontaneous metastasis by luciferase-labeled human xenograft osterosarcoma cells in nude mice. Chin. Med. J. (Engl.), 125, 4022-4030.
  27. Kakhki, V.R., Shahriari, S., Treglia, G., Hasanzadeh, M., Zakavi, S.R., Yousefi, Z., Kadkhodayan, S. and Sadeghi, R. (2013) Diagnostic performance of fluorine 18 fluorodeoxyglucose positron emission tomography imaging for detection of primary lesion and staging of endometrial cancer patients: Systemic review and meta-analysis of the literature. Int. J. Gynecol. Cancer, 23, 1536-1543. https://doi.org/10.1097/IGC.0000000000000003
  28. Cook, N., Jodrell, D.I. and Tuveson, D.A. (2012) Predictive in vivo animal models and translation to clinical trials. Drug Discovery Today, 17, 253-260. https://doi.org/10.1016/j.drudis.2012.02.003
  29. Tentler, J.J., Tan, A.C., Weekers, C.D., Jimeno, A., Leong, S., Pitts, T.M., Arcaroli, J.J., Messersmith, W.A. and Eckhardt, S.G. (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol., 9, 338-350. https://doi.org/10.1038/nrclinonc.2012.61
  30. Moro, M., Bertolini, G., Tortoreto, M., Pastorino, U., Sozzi, G. and Roz, L. (2012) Patient-derived xenografts of non small cell lung cancer; resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J. Biomed. Biotechnol., 2012, 1-11.
  31. Fichtner, I., Rolff, J., Soong, R., Hoffmann, J., Hammer, S., Sommer, A., Becker, M. and Merk, J. (2008) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res., 14, 6456-6468. https://doi.org/10.1158/1078-0432.CCR-08-0138
  32. Zhuo, Y., Wu, Y., Guo, A., Chen, S. and Su, J. (2010) [Establishment and its biological characteristics of patient-derived lung cancer xenograft models]. Zhongguo Feiai Zazhi, 13, 568-574.
  33. Jin, K., He, K., Han, N., Li, G., Wang, H., Xu, Z., Jiang, H., Zhang, J. and Teng, L. (2011) Establishment of a PDTT xenograft model of gastric carcinoma and its application in personalized therapeutic regimen selection. Hepatogastroenterology, 58, 1814-1822.

Cited by

  1. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes vol.14, pp.1, 2015, https://doi.org/10.1186/s12943-015-0369-2
  2. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine vol.5, pp.1, 2015, https://doi.org/10.1038/srep11275
  3. ]phenanthridines: New Structures and Insight into Their Mode of Antiproliferative Action vol.11, pp.19, 2016, https://doi.org/10.1002/cmdc.201600199
  4. Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments vol.11, pp.23, 2016, https://doi.org/10.2217/nnm-2016-0251
  5. Identification of Biomarkers for Breast Cancer Using Databases vol.21, pp.4, 2016, https://doi.org/10.15430/JCP.2016.21.4.235
  6. Patterns of Vasculature in Mouse Models of Lung Cancer Are Dependent on Location vol.19, pp.2, 2017, https://doi.org/10.1007/s11307-016-1010-5
  7. Characterization of an Orthotopic Colorectal Cancer Mouse Model and Its Feasibility for Accurate Quantification in Positron Emission Tomography vol.19, pp.5, 2017, https://doi.org/10.1007/s11307-017-1051-4
  8. Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03864-w
  9. Current mathematical models for cancer drug discovery pp.1746-045X, 2017, https://doi.org/10.1080/17460441.2017.1340271
  10. Human MAP Tau Based Targeted Cytolytic Fusion Proteins vol.5, pp.4, 2017, https://doi.org/10.3390/biomedicines5030036
  11. A mutation in NOTCH1 ligand binding region detected in patients with oral squamous cell carcinoma reduces NOTCH1 oncogenic effect vol.38, pp.4, 2017, https://doi.org/10.3892/or.2017.5870
  12. Patient-Derived Xenograft Models for Endometrial Cancer Research vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082431
  13. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research vol.15, pp.9, 2018, https://doi.org/10.1038/s41575-018-0033-6
  14. Proanthocyanidin Polymer-Rich Fraction of Stryphnodendron adstringens Promotes in Vitro and in Vivo Cancer Cell Death via Oxidative Stress vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00694
  15. Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome vol.285, pp.11, 2018, https://doi.org/10.1111/febs.14471
  16. Xenografting for disease modeling of intramedullary spinal cord tumors: a systematic review pp.1476-5624, 2019, https://doi.org/10.1038/s41393-019-0248-6