DOI QR코드

DOI QR Code

Effects of Vitamin $K_1$ on the Developmental and Survival Rate of Porcine In Vitro Fertilized Embryos

Vitamin $K_1$의 첨가가 돼지 체외 수정란의 발달과 생존율에 미치는 효과

  • Park, Hum-Dai (Department of Biotechnology, Daegu University) ;
  • Zhu, Yi-Chen (Department of Biotechnology, Daegu University) ;
  • Park, Yong-Soo (Department of Horse Industry, Korea National College of Agriculture and Fisheries)
  • 박흠대 (대구대학교 생물공학과) ;
  • 주역진 (대구대학교 생물공학과) ;
  • 박용수 (국립한국농수산대학 말산업학과)
  • Received : 2014.02.25
  • Accepted : 2014.03.25
  • Published : 2014.03.31

Abstract

The in vitro production of porcine embryos was essential to increase of blastocyst development rate and select of high quality blastocyst in early stage. There were a lot of reports about in vitro porcine embryo development, but there was no report about the selection of high quality embryos. Therefore, in this study, we investigated the effect of vitamin $K_1$ (vit $K_1$) on the development and survival rate of porcine in vitro fertilized embryos. When vit $K_1$ was treated for 24 hr at day 1 in vitro culture, blastocyst development rate in the control group ($35.5{\pm}3.2%$) was significantly lower compared to $1.0{\mu}M$, $3.0{\mu}M$, or $6.0{\mu}M$ groups ($14.5{\pm}4.3$, 0.0, or 0.0%; p<0.05). The survival rates of blastocysts at day 8 in $1.0{\mu}M$, $3.0{\mu}M$ or $6.0{\mu}M$ of vit $K_1$ treated groups ($22.2{\pm}2.9$, 0.0 or 0.0%) were significantly lower than that of the control group ($31.8{\pm}2.6%$; p<0.05). We were added at $1.0{\mu}M$, $3.0{\mu}M$ or $6.0{\mu}M$ vit $K_1$ for different durations of time at day 1 in vitro culture. The development rate and survival rate in the group of $1.0{\mu}M$ vit $K_1$ for 6 hr was $26.5{\pm}2.9%$ and $47.2{\pm}2.8%$, respectively, which were differed significantly in the group of 12 hr (p<0.05). In the group of $3.0{\mu}M$ vit $K_1$, the blastocyst development in control group was $36.4{\pm}3.1%$ but, the survival rate $41.7{\pm}3.2%$ in the group of 3.0 hr was significantly higher than that of the control group (p<0.05). In the group of $6.0{\mu}M$ vit $K_1$, the control group's the blastocyst development was $32.0{\pm}2.8%$ and the 0.5 hr supplement group's survival rates was $42.9{\pm}1.8%$ higher than other groups. We added vit $K_1$ at day 1, day 2, day 4 and day 6 of in vitro culture, on the based the results of supplemented concentration and duration. In the group of $1.0{\mu}M$ 6.0 hr addition, the blastocyst development rate of day 4 and the survival rate of day 2 were the highest in each group. In the groups of $3.0{\mu}M$ 3.0 hr addition or $6.0{\mu}M$ 0.5 hr addition, the blastocyst development ($59.5{\pm}4.1%$ and $50.0{\pm}3.6%$) and survival rates ($72.7{\pm}5.4%$ and $79.2{\pm}4.0%$) on day 4 were significantly higher than that of control and other experiment groups (p<0.05). Meanwhile, the number of cells in blastocysts that produced by vit $K_1$ supplementation was $53.4{\pm}5.8$, $49.4{\pm}3.8$ and $51.5{\pm}4.5$ respectively, which were significantly higher than that of $40.2{\pm}2.3$ in the control group (p<0.05). There was no difference of the number of apoptotic cells between control and experiment groups. In addition, gene expression of survival blastocyst, the Bax mRNA expression was similar between the control and the experiment groups. However, Bcl-xL mRNA expression's in the group of $6.0{\mu}M$ 0.5 hr on day 4 was highest among control and experiment groups (p<0.05). In this study suggested that the control of concentration, duration and time was effective on the survival and cell number of porcine blastocyst derived from in vitro. We are not know what the exact reasons of the effect of vit $K_1$ on embryo development and need to fur ther study. However, vit $K_1$ might be using the selection of high quality porcine blastocyst.

돼지 수정란의 체외 생산 효율성 향상을 위해서는 배발생율과 더불어 고품질의 배를 조기에 선별해야 한다. 체외 배 발생율에 대한 보고는 많지만, 고품질의 배를 선별할 수 있는 기술에 대한 연구는 거의 없었다. 본 연구에서는 돼지 난포란 유래 수정란의 체외배양에 있어서 배반포로의 배 발달과 생존에 미치는 Vitamin $K_1$(vit $K_1$) 첨가 농도, 시기 및 시간의 효과를 검토하였다. $1.0{\mu}M$, $3.0{\mu}M$$6.0{\mu}M$ vit $K_1$을 배양 1일째 24시간 첨가한 결과, 배반포 발달율이 시험군이 $14.5{\pm}4.3$, 0.0 및 0.0%로써 대조군의 $35.5{\pm}3.2%$에 비하여 유의하게 낮았고(p<0.05), 배반포의 생존율도 대조군이 $31.8{\pm}2.6%$로써 시험군의 $22.2{\pm}2.9$, 0.0 및 0.0%에 비하여 유의하게 높았다(p<0.05). 상기 첨가 농도에서 첨가 시간을 달리한 결과, $1.0{\mu}M$ 농도에서 6시간 처리군의 배반포 발달율과 생존율이 각각 $26.5{\pm}2.9%$$47.2{\pm}2.8%$로써 가장 높았고 특히, 12시간 처리군보다 유의하게 높았다(p<0.05). $3.0{\mu}M$ 농도에서는 대조군의 배발달율이 $36.4{\pm}3.1%$로 가장 높았으나, 생존율은 3.0시간 첨가군이 $41.7{\pm}3.2%$로 대조군에 비하여 유의하게 높았다(p<0.05). $6.0{\mu}M$ 농도에서도 배발달율은 대조군($32.0{\pm}2.8%$), 생존율은 0.5시간 첨가군($42.9{\pm}1.8%$)이 가장 높았다. 각각의 vit $K_1$ 첨가 농도와 시간을 기준으로 서로 다른 배양 시기에 첨가한 결과, $1.0{\mu}M$ 6시간 첨가군에서는 배반포 발달율은 배양 4일째 첨가군, 생존율은 배양 2일째 첨가군이 가장 높았다. 한편, $3.0{\mu}M$ 3.0시간 및 $6.0{\mu}M$ 0.5시간 첨가군에서는 배양 4일째 첨가군의 배반포 발달율($59.5{\pm}4.1%$$50.0{\pm}3.6%$)과 생존율($72.7{\pm}5.4%$$79.2{\pm}4.0%$)이 대조군과 다른 시험군에 비하여 유의하게 높았다(p<0.05). 한편, vit $K_1$ 첨가에 따른 배반포의 세포 수를 조사한 결과, 첨가군($1.0{\mu}M$ 6시간 배양 2일째, $3.0{\mu}M$ 3.0시간 배양 4일째 및 $6.0{\mu}M$ 0.5시간 배양 6일째)이 $53.4{\pm}5.8$, $49.4{\pm}3.8$$51.5{\pm}4.5$개로써 대조군의 $40.2{\pm}2.3$개에 비하여 유의하게 많았다(p<0.05). 그러나 사멸세포 수는 시험군이 $3.2{\pm}0.9{\sim}3.7{\pm}2.1$개로써 대조군의 $4.2{\pm}1.2$개보다 적었으나, 유의차는 없었다. 세포 사멸 유도 유전자인 Bax mRNA 발현은 처리군과 대조군은 비슷하였으나, 세포 사멸 억제 유전자인 Bcl-xL mRNA 발현은 처리군이 대조군보다 높았고 특히, $6.0{\mu}M$ 0.5시간 배양 4일째 첨가군이 가장 높았다. 이상의 결과로부터 돼지 미성숙 난포란 유래 수정란의 체외 배양에 vit $K_1$의 첨가는 배반포의 생존율과 세포수 증가에 효과적이었다. 그 이유에 대해서는 아직 많은 부분이 밝혀져야 되겠지만, 고품질의 배반포 조기 선발에는 활용이 가능할 것으로 생각된다.

Keywords

References

  1. Abeydeera LR and Day BN. 1997. In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology 48: 537-544. https://doi.org/10.1016/S0093-691X(97)00270-7
  2. Akiyoshi T, Matzno S, Sakai M, Okamura N and Matsuyama K. 2009. The potential of vitamin K3 as an anticancer agent breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother Pharmacol. 65: 143-150. https://doi.org/10.1007/s00280-009-1016-7
  3. Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN and Prather RS. 2010. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83: 791-798. https://doi.org/10.1095/biolreprod.110.085936
  4. Beebe LF, McIfactrick S and Nottle MB. 2007. The effect of energy substrate concentration and amino acids on the in vitro development of preimplantation porcine embryos. Clone Stem Cells 9: 206-215. https://doi.org/10.1089/clo.2006.0060
  5. Bouchard C, Staller P and Eilers M. 1998. Control of cell proliferation by Myc. Trends Cell Biol. 8: 202-206. https://doi.org/10.1016/S0962-8924(98)01251-3
  6. Bouzahzah B, Nishikawa Y, Simon D and Carr BI. 1995. Growth control and gene expression in a new hepatocellular carcinoma cell line, Hep4 inhibitory actions of vitamin K. J. Cell Physiol. 165: 459-467. https://doi.org/10.1002/jcp.1041650303
  7. Camous S, Heyman Y, Meziou W and Menezo Y. 1984. Cleavage beyond the block stage and survival after of early bovine embryo cultured with trophoblastic vesicles. J. Reprod. Fertil. 72: 479-485. https://doi.org/10.1530/jrf.0.0720479
  8. Cole MD, McMahon SB. 1999. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18: 2916-2924. https://doi.org/10.1038/sj.onc.1202748
  9. Davis LW, Steven PM. 2003. The anticancer effects of vitamin K. Alernative Med. Review. 8: 303-318.
  10. First NL, Prather RS. 1991. Production of embryos by oocyte cytoplast-blastomere fusion in domestic animals. J. Reprod. Fertil. Suppl. 43: 245-254.
  11. Hao Y, Lai L, Mao J, Im GS, Bonk A and Prather RS. 2003. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69: 501-507. https://doi.org/10.1095/biolreprod.103.016170
  12. Heyman Y, Menezo Y, Chesne P, Camous S and Gamier V. 1987. In vitro cleavage of bovine and ovine early embryos: Improved development using co-culture with trophoblastic vesicles. Theriogenology 27: 59-68. https://doi.org/10.1016/0093-691X(87)90070-7
  13. Gant TW, Rao DN, Mason RP and Cohen GM. 1998. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 65: 157-173.
  14. Khurana NK, Niemann H. 2000. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 62: 847-856. https://doi.org/10.1095/biolreprod62.4.847
  15. Kim JC, Kim JY, Joo JH, Yoon SH, Lee SJ, Lee SJ, Kim JM, Song HB and Park HD. 2000. Effect of heat shock on in vitro development of IVM-derived bovine embryo. Korea J. Animal Reprod. 24: 311-317.
  16. Kim JY, Park H, Kim JM, Lee JH and Park HD. 2004. Studies on the in vitro fertilization and in vitro development of porcine embryos in different culture system. Korean J. Emb. Trans. 19: 19-25.
  17. Kitagawa Y, Suzuki k, Yoneda A and Watanabe T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxyfen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62: 1186-1197. https://doi.org/10.1016/j.theriogenology.2004.01.011
  18. Lloyd RE, Romar R, Matas C, Gutierrez-Adan A, Holt WV and Coy P. 2009. Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction. 137: 679-687. https://doi.org/10.1530/REP-08-0405
  19. Motli J, Fulka J. 1974. Fertilization of pig follicular oocytes cultivated in vitro. J. Reprod. Fertil. 36: 235-237. https://doi.org/10.1530/jrf.0.0360235
  20. Nguyen NT, Lo NW, Chuang SP, Jian YL and Ju JC. 2011. Sonic hedgehog supplementation of oocyte and embryo culture media enhances development of IVF porcine embryos. Reproduction. 142: 87-97. https://doi.org/10.1530/REP-11-0049
  21. Nutter LM, Ngo EO, Fisher GR and Gutierrez PL. 1992. DNA strand scission and free radical production in menadionetreated cells. Correlation with cytotoxicity and role of NADPH quinine acceptor oxidoreductase. J. Biol. Chem. 267: 2474-2479.
  22. Philipp S and Ouwehand AC. 2012. Vitamin K: essential for healthy bones. Nutrafoods 11: 111-116. https://doi.org/10.1007/s13749-012-0051-x
  23. Prather RS, Hawley RJ, Carter DB, Lai L and Greenstein JL. 2003. Transgenic swine for biomedicine and agriculture. Theriogenology 59: 115-123. https://doi.org/10.1016/S0093-691X(02)01263-3
  24. Ross D, Thor H, Orrenius S and Moldeus P. 1985. Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem. Biol. Interact. 55: 177-184. https://doi.org/10.1016/S0009-2797(85)80126-5
  25. Ross D, Thor H, Threadgill MD, Sandy MS, Smith MT, Moldeus P and Orrenius S. 1986. The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes. Arch. Biochem. Biophys. 248: 460-466. https://doi.org/10.1016/0003-9861(86)90499-6
  26. Sturmey RG, Hawkhead JA, Barker EA and Leese HJ. 2009. DNA damage and metabolic activity in the preimplantation embryo. Hum. Reprod. 24:81-91. https://doi.org/10.1093/humrep/dep751
  27. Ulloa CM, Yoshizawa M, Komoriya E, Mitsui A, Nagai T and Kikuchi K. 2008. The blastocyst production rate and inci dence of chromosomal abnormalities by developmental stage in vitro produced porcine embryos. J. Reprod. Dev. 54: 22-29. https://doi.org/10.1262/jrd.19102
  28. Wang Z, Wang M, Finn F and Carr BI. 1995. The growth inhibitory effects of vitamins K and their actions on gene expression. Hepatology 22: 876-882.
  29. Wu FY, Chang NT, Chen WJ and Juan CC. 1993. Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncogene 8: 2237-2244.
  30. Zhang JY, Diao YF, Oqani RK, Han RX and Jin DI. 2012. Effect of endoplasmic reticulum stress on porcine oocyte maturation and parthenogenetic embryonic development in vitro. Biol. Reprod. 86:128: 1-9.