DOI QR코드

DOI QR Code

Growth Model of Sowthistle (Ixeris dentata Nakai) Using Expolinear Function in a Closed-type Plant Production System

완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 씀바귀의 생육 모델

  • Cha, Mi-Kyung (Major in Plant Resources and Environment, Jeju National University) ;
  • Son, Jung-Eek (Department of Plant Science, Seoul National University) ;
  • Cho, Young-Yeol (Major in Horticultural Science, Jeju National University)
  • 차미경 (제주대학교 식물자원환경전공) ;
  • 손정익 (서울대학교 식물생산과학부) ;
  • 조영열 (제주대학교 원예환경전공)
  • Received : 2013.09.02
  • Accepted : 2013.11.19
  • Published : 2014.04.30

Abstract

The objective of this study was to make growth and yield models of sowthistle (Ixeris dentata Nakai) by using an expolinear functional equation in a closed-type plant production system. The growth and yield of hydroponically-grown sowthistle were investigated under four different planting distances ($15{\times}10$, $15{\times}15$, $15{\times}20$, and $15{\times}25$ cm). Shoot dry weights per plant was the highest at $15{\times}25$ cm, but was the lowest at $15{\times}10$ cm. Shoot dry weights per area was the highest at $15{\times}15$ cm, but was the lowest at $15{\times}25$ cm. The optimum planting density and planting distance for yield of sowthistle were 44 plants/$m^2$ and $15{\times}15$ cm, respectively. Shoot dry weights per plant and per area were showed as an expolinear type functional equation. A linear relationship between shoot dry and fresh weights was observed to be linear regardless of the planting distance. Crop growth rate, relative growth rate and lost time in an expolinear functional equation showed quadratic function form. Radiation use efficiency of sowthistle was $4.3-6.1g{\cdot}MJ^{-1}$. The measured and estimated shoot dry weights showed a good agreement using days after transplanting as input data. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of sowthistle in a closed-type plant production system.

본 연구는 완전제어형 식물공장에서 선형 지수 함수를 이용하여 재식거리($15{\times}10$, $15{\times}15$, $15{\times}20$, $15{\times}25$cm)에 따른 씀바귀의 생육과 수량 모델을 개발하고자 수행되었다. 개체당 건물중은 25cm 처리구가 가장 높았으며, 10cm 처리구가 가장 낮았다. 단위면적당 건물중으로 보면 15cm 처리구가 가장 높았으며, 25cm 처리구가 가장 낮았다. 따라서 씀바귀 생육을 위한 적정 재식밀도와 재식거리는 각각 44 plants/$m^2$$15{\times}15$cm였다. 정식 후 일수에 따른 건물중의 변화 곡선은 선형 지수적인 형태를 보였으며, 재식거리에 따른 선형 지수 형태를 이용하여 모델식을 예측할 수 있었다. 개체당 건물중과 개체당 생체중과의 관계는 재식거리와는 무관하게 직선적인 관계를 보여, 건물중 예측으로 생체중도 예측할 수 있었다. 선형 지수 함수식에서 작물생장율과 상대생장율, lost time는 쌍곡선 형태를 보였다. 씀바귀의 광사용효율는 $4.3-6.1g{\cdot}MJ^{-1}$였다. 재식거리에 따른 씀바귀의 생육과 수량은 선형 지수 함수식으로 정확하게 예측할 수 있었다. 결론적으로, 선형 지수 함수는 완전제어형 식물 공장에서 씀바귀의 생육과 수량을 예측하는데 유용한 함수였으며, 생육과 수량 모델을 개발할 수 있었다.

Keywords

References

  1. Beccafichi, C., P. Benincasa, M. Guiducci, and F. Tei. 2003. Effect of crop density on growth and light interception in greenhouse lettuce. Acta Hort. 614:507-513.
  2. Both, A.J., L.D. Albright, R.W. Langhans, R.A. Reiser, and B.G. Vinzant. 1997. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environmental facility: Experimental results. Acta Hort. 418:45-51.
  3. Cha, M.K., J.S. Kim, and Y.Y. Cho. 2012. Growth response of lettuce to various levels EC and light intensity in plant factory. J. Bio-Env. Con. 21:305-311. https://doi.org/10.12791/KSBEC.2012.21.4.305
  4. Cho, Y.Y., K.Y. Choi, Y.B. Lee, and J.E. Son. 2012. Growth characteristics of sowthistle (Ixeris dentate Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Hort. Environ. Biotechnol. 53:368-372. https://doi.org/10.1007/s13580-012-0691-1
  5. Choi, J.S., H.S. Young, and B.W. Kim. 1990. Hypoglycemic and hypolipemic effects of Ixeris dentate in diabetic rats. Arch. Pharm. Res 13:269-273. https://doi.org/10.1007/BF02856534
  6. Dennett, M.D. and K.H.M. Ishag. 1998. Use of the expolinear growth model to analyze the growth of faba bean, peas and lentils at three densities: Predictive use of the model. Ann. Bot. 82:507-512. https://doi.org/10.1006/anbo.1998.0709
  7. Francescangeli, N., M.A. Sangiacomo, and H. Martí. 2006. Effects of plant density in broccoli on yield and radiation use efficiency. Sci. Hort. 110:135-143. https://doi.org/10.1016/j.scienta.2006.06.025
  8. Goudriaan, J. and H.H. Van Laar. 1994. Modelling potential crop growth processes: Textbook with exercises. Current issues in production ecology 2. Kluwer Academic Publishers, Dordrecht.
  9. Goudriaan, J. and J.L. Monteith, 1990. A mathematical function for crop growth based on light interception and leaf area expansion. Ann. Bot. 66:695-701.
  10. Hong, S.G., D.M. Jeong, K.Y. Kim, and E.H. Hwang. 2010. The composition of the root of Ixeris dentata var. albiflora Nakai. and cell viability and DPPH radical scavenging activities of its extract. Kor. J. Nutr. 43:105-113. https://doi.org/10.4163/kjn.2010.43.2.105
  11. Ishag, K.H.M. and M.D. Dennett. 1998. Use of the expolinear growth model to analyze the growth of faba bean, peas and lentils at three densities: Fitting the model. Ann. Bot. 82:497-505. https://doi.org/10.1006/anbo.1998.0708
  12. Kage, H., H. Stutzel, and C. Alt. 2001. Predicting dry matter production of cauliflower (Brassica oleracea L. botrytis) under unstressed conditions: Part II. Comparison of light use efficiency and photosynthesis-respiration based modules. Sci. Hort. 87:171-190. https://doi.org/10.1016/S0304-4238(00)00180-1
  13. Kim, J.H., M.S. Sung, I.S. So, and H.N. Hyun. 2007. Study on the distribution and utilization of basalt underground air in Jeju volcanic island. Kor. J. Hort. Sci. Technol. 25(Suppl. II):113. (Abstr.)
  14. Kim, M.J., J.S. Kim, D.M. Jeong, S.S. Ham, and C.Y. Yu. 2002. Effect of antioxidant, antimutagenicity and anticancer of root extract from Ixeris dentata Nakai. Korean J. Medicinal Crop Sci. 10:222-229.
  15. Kiniry, J.R., J.A. Landivar, M. Witt, T.J. Gerik, J. Cavero, and L.J. Wade. 1998. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum. Field Crops Res. 56:265-270. https://doi.org/10.1016/S0378-4290(97)00092-0
  16. Lee, E. 2011. Effects of Ixeris dentata ext. on lowering lipid and anti-oxidation. Korean J. Plant Res. 24:55-60. https://doi.org/10.7732/kjpr.2011.24.1.055
  17. Lee, J.H., J. Goudriaan, and H. Challa. 2003. Using the expolinear growth equation for modeling crop growth in year-round cut chrysanthemum. Ann. Bot. 92:697-708. https://doi.org/10.1093/aob/mcg195
  18. Lin, W.C. 2002. Crop modeling and yield prediction for greenhousegrown lettuce. Acta Hort. 593:159-164.
  19. Monti, A., M.T. Amaducci, G. Pritoni, and G. Venturi. 2005. Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime. J. Exp. Bot. 56:1389-1395. https://doi.org/10.1093/jxb/eri140
  20. NeSmith, D.S. 1997. Summer squash (Cucurbita pepo L.) leaf number as influenced by thermal time. Sci. Hort. 68:219-225. https://doi.org/10.1016/S0304-4238(96)00952-1
  21. Qin, L., S. Guo, W. Ai, and Y. Tang. 2008. Selection of candidate salad vegetables for controlled ecological life support system. Adv. Space Res. 41:768-772. https://doi.org/10.1016/j.asr.2007.09.037
  22. Reiners, S. and D.I.M. Riggs. 1999. Plant population affects yield and fruit size of pumpkin. HortScience 34:1076-1078.
  23. SAS Institute. 1985. SAS user's guide: Statistics. 5th ed. SAS Inst., Cary, NC, USA.
  24. Tei, F., D.P. Aikman, and A. Scaife. 1996a. Growth of lettuce, onion and red beet. 2. Growth modeling. Ann. Bot. 78:645-652. https://doi.org/10.1006/anbo.1996.0172
  25. Tei, F., A. Scaife, and D.P. Aikman. 1996b. Growth of lettuce, onion and red beet. 1. Growth analysis, light interception, and radiation use efficiency. Ann. Bot. 78:633-643. https://doi.org/10.1006/anbo.1996.0171

Cited by

  1. Development of planting-density growth harvest (PGH) charts for quinoa (Chenopodium quinoa Willd.) and sowthistle (Ixeris dentata Nakai) grown hydroponically in closed-type plant production systems vol.57, pp.3, 2016, https://doi.org/10.1007/s13580-016-0008-x