DOI QR코드

DOI QR Code

Effect of Silicon on Growth and Temperature Stress Tolerance of Nephrolepis exaltata 'Corditas'

  • Sivanesan, Iyyakkannu (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Son, Moon Sook (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Soundararajan, Prabhakaran (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2013.05.29
  • Accepted : 2013.08.13
  • Published : 2014.04.30

Abstract

Effect of silicon (Si) nutrition on growth and temperature stress tolerance of Nephrolepis exaltata 'Corditas' grown in a soilless substrate was examined. In vitro-grown acclimatized plantlets were transplanted into the pots containing a coir-based substrate. A nutrient solution containing 0, 50, or $100mg{\cdot}L^{-1}$ Si was supplied through a drip-irrigation system. After 5 months of cultiv ation, S i-treated and -untreated p lants were grown at 10, 25, or $40{\pm}1^{\circ}C$ under a 12 h photoperiod with $530{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and 60% RH. After 7 days, chlorophyll content and chlorophyll fluorescence parameters were measured. Silicon nutrition had a negative effect on growth characteristics of N. exaltata 'Corditas'. However, Si-treated plants had more tolerance to temperature stress than the control plants. The Fv/Fm value was not significantly different when the plants were exposed to $25^{\circ}C$. However, significant difference in Fv/Fm was recorded when plants were exposed to 10 or $40^{\circ}C$. Thus, Fv/Fm could be used as an indicator of low and high temperature tolerance in ferns. The present study also suggests that application of Si may be used to enhance temperature tolerance of ferns.

Keywords

References

  1. Agarie S, N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P.B. Kaufman. 1998. Effect of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96-103. https://doi.org/10.1626/pps.1.96
  2. Arnon, D.I. 1949. Copper enzyme in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1-15. https://doi.org/10.1104/pp.24.1.1
  3. Bae, M.J., Y.G. Park, and B.R. Jeong. 2010. Effect of silicate fertilizer supplemented to a medium on the growth and development of potted plants. Flower Res. J. 18:50-56.
  4. Brecht, M., C. Stiles, and L. Datnoff. 2009. Effect of high temperature stress and silicon fertilization on pathogenicity of Bipolaris cynodontis and Curvularia lunata on Floradwarf bermudagrass. Int. Turfgrass Soc. Res. J. 11:165-180.
  5. Chen, W., X. Yao, K. Cai, and J. Chen. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142:67-76. https://doi.org/10.1007/s12011-010-8742-x
  6. Chen, W.R., J.S. Zheng, Y.Q. Li, and W.D. Guo. 2012. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 59:732-740. https://doi.org/10.1134/S1021443712060040
  7. Dawson, I.A., R.W. King, and R. van der Staay. 1991. Optimising conditions for growth of Nephrolepis ferns. Sci. Hort. 45:303-314. https://doi.org/10.1016/0304-4238(91)90076-B
  8. Drees, L.R., L.P. Wilding, N.E. Smeck, and A.L. Senkayi. 1989. Silica in soils: Quartz and disordered silica polymorphs, p. 913-974. In: J.P. Dixon and S.B. Weed (eds.). Minerals in soil environment. 2nd ed. Soil Sci. Soc. Am. Book Ser. Madison, WI.
  9. Ehret, D.L., J.G. Menzies, and T. Helmer. 2005. Production and quality of greenhouse roses in recirculating nutrient systems. Sci. Hort. 106:103-113. https://doi.org/10.1016/j.scienta.2005.03.002
  10. Elliott, C.L. and G.H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118-1119. https://doi.org/10.1021/jf00006a024
  11. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA. 91:11-17. https://doi.org/10.1073/pnas.91.1.11
  12. Epstein, E. 1999. Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  13. Erwin, J.E., R.D. Heins, and J.E. Faust. 1993. Thermomorphogenic and photoperiodic responses of Nephrolepis exaltata 'Dallas Jewel'. HortScience 28:182-184.
  14. Gao, X., C. Zou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29:1637-1647. https://doi.org/10.1080/01904160600851494
  15. Guo, W., Y.L. Hou, S.G. Wang, and Y.G. Zhu. 2005. Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173-181. https://doi.org/10.1007/s11104-004-4732-0
  16. Guo, Y.P., H.F. Zhou, and L.C. Zhang. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two Citrus Species. Sci. Hort. 108:260-267. https://doi.org/10.1016/j.scienta.2006.01.029
  17. Hodson, M.J., P.J. White, A. Mead, and M.R. Broadley. 2005. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96:1027-1046. https://doi.org/10.1093/aob/mci255
  18. Hoshizaki, B.J. and R. Moran. 2001. Fern grower's manual. 2nd ed. Timber Press, Portland, Oregon, USA.
  19. Hwang, S.J., H.M. Park, and B.R. Jeong. 2005. Effects of potassium silicate on the growth of miniature rose 'Pinocchio' grown on rockwool and its cut flower quality. J. Japan. Soc. Hort. Sci. 74:242-247. https://doi.org/10.2503/jjshs.74.242
  20. Jeong, K.J., Y.S. Chon, S.H. Ha, H.K. Kang, and J.G. Yun. 2012. Silicon application on standard chrysanthemum alleviates damages induced by disease and aphid insect. Kor. J. Hort. Sci. Technol. 30:21-26. https://doi.org/10.7235/hort.2012.11090
  21. Jiang, H. and G.S. Howell. 2002. Applying chlorophyll fluorescence technique to cold hardiness studies of grapevines. Am. J. Enol. Viticult. 53:210-217.
  22. Kalaji, H.M., K. Bosa, J. Koscielniak, and Z. Hossain. 2011. Chlorophyll a fluorescence - A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). OMICS J. Integr. Biol. 15:925-934. https://doi.org/10.1089/omi.2011.0070
  23. Kamenidou, S., T.J. Cavins, and S. Marek. 2009. Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Sci. Hort. 119:297-301. https://doi.org/10.1016/j.scienta.2008.08.012
  24. Kamenidou, S., T.J. Cavins, and S. Marek. 2008. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience 43:236-239.
  25. Kamenidou, S., T.J. Cavins, and S. Marek. 2010. Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Sci. Hort. 123:390-394. https://doi.org/10.1016/j.scienta.2009.09.008
  26. Kim, S.G., K.W. Kim, E.W. Park, and D. Choi. 2002. Siliconinduced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095-1103. https://doi.org/10.1094/PHYTO.2002.92.10.1095
  27. Liang, Y., Q. Shen, Z. Shen, and T. Ma. 1996. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 19:173-183. https://doi.org/10.1080/01904169609365115
  28. Liang, Y., W. Sun, Y.G. Zhu, and P. Christie. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 147:422-428. https://doi.org/10.1016/j.envpol.2006.06.008
  29. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  30. Ma, J.F. and E. Takahashi. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115-119. https://doi.org/10.1007/BF00041376
  31. Ma, J.F. and E. Takahashi. 1993. Interaction between calcium and silicon in water-cultured rice plants. Plant Soil 148:107-113. https://doi.org/10.1007/BF02185390
  32. Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392-397. https://doi.org/10.1016/j.tplants.2006.06.007
  33. Mateos-Naranjo, E., L. Andrades-Moreno, and A.J. Davy. 2013. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Biochem. 63:115-121. https://doi.org/10.1016/j.plaphy.2012.11.015
  34. Mattson, N.S. and W.R. Leatherwood. 2010. Potassium silicate drenches increased leaf silicon content and affect morphological traits of several floricultural crops grown in a peat-based substrate. Hortscience 45:43-47.
  35. Maxwell, K. and N.G. Johnson. 2000. Chlorophyll fluorescence - A practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
  36. Moon, H.H., M.J. Bae, and B.R. Jeong. 2008. Effect of silicate supplemented medium on rooting of cutting and growth of chrysanthemum. Flower Res. J. 16:107-111.
  37. Piperno, D.R. 1988. Phytolith analysis: An archaeological and geological perspective. Academic Press, San Diego.
  38. Ranganathan, S., V. Suvarchala, Y.B.R.D. Rajesh, M. Srinivasa Prasad, A.P. Padmakumari, and S.R. Voleti. 2006. Effects of silicon sources on its deposition, chlorophyll content, and pest resistance in rice. Biol. Plant. 50:713-716. https://doi.org/10.1007/s10535-006-0113-2
  39. Rodrigues, F.A., F.X.R. Vale, G.H. Komdorfer, A.S. Prabhu, L.E. Datnoff, A.M.A. Oliveira, and L. Zambolim. 2003. Influence of silicon on sheath blight of rice in Brazil. Crop Prot. 22:23-29. https://doi.org/10.1016/S0261-2194(02)00084-4
  40. Roy, A.C., M.Y. Ali, R.L. Fox, and J.A. Silva. 1971. Influence of calcium silicate on phosphate solubility and availability in Hawaiian Latosols. Proc. Int. Symp. Soil Fert. Eval. New Delhi 1:757-765.
  41. Salvucci, M.E. and S.J. Crafts-Brandner. 2004. Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134:1460-1470. https://doi.org/10.1104/pp.103.038323
  42. Savvas, D., G. Manos, A. Kotsiras, and S. Souvaliotis. 2002. Effects of silicon and nutrient-induced salinity on yield, flower quality and nutrient uptake of gerbera grown in a closed hydroponic system. J. Appl. Bot. 76:153-158.
  43. Shi, G., Q. Cai, C. Liu, and L. Wu. 2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. 61:45-52. https://doi.org/10.1007/s10725-010-9447-z
  44. Sivanesan, I., M.S. Son, J.Y. Song, and B.R. Jeong. 2013. Subirrigational supply of silicon affects the growth of three chrysanthemum cultivars. Hort. Environ. Biotechnol. 54:14-19. https://doi.org/10.1007/s13580-013-0120-0
  45. Sivanesan, I., M.S. Son, C.S. Lim, and B.R. Jeong. 2011. Effect of soaking of seeds in potassium silicate and uniconazole on germination and seedling growth of tomato cultivars, Seogeon and Seokwang. Afr. J. Biotechnol. 10:6743-6749.
  46. Sivanesan, I., M.S. Son, J.P. Lee, and B.R. Jeong. 2010. Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and 'Yellow Boy' seedlings cultured in an environment controlled chamber. Propag. Ornam. Plants 10:136-140.
  47. Voogt, W. and C. Sonneveld. 2001. Silicon in horticultural crops grown in soilless culture, p. 115-131. In: L.E. Datnoff, G.H. Snyder, and G.H. Korndorfer (eds.). Silicon in agriculture. Elsevier, Amsterdam.
  48. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  49. Wang, X.S. and J.G. Han. 2007. Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci. Plant Nutr. 53:278-285. https://doi.org/10.1111/j.1747-0765.2007.00135.x
  50. Wiese, H., M. Nikolic, and V. Romheld. 2007. Silicon in plant nutrition, p. 33-47. In: B. Sattelmacher and W.J. Horst (eds.). The apoplast of higher plants: Compartment of storage, transport and reactions. Springer, The Netherlands.
  51. Zuccarini, P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plant. 52:157-160. https://doi.org/10.1007/s10535-008-0034-3

Cited by

  1. Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans ‘Dreamland Yellow’ grown under salinity stress vol.56, pp.6, 2015, https://doi.org/10.1007/s13580-015-1081-2
  2. Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida ‘Rock Fire’ vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081768
  3. Silicon application during vegetative propagation affects photosynthetic protein expression in strawberry vol.59, pp.2, 2018, https://doi.org/10.1007/s13580-018-0022-2
  4. Foliar or Subirrigation Silicon Supply Mitigates High Temperature Stress in Strawberry by Maintaining Photosynthetic and Stress-Responsive Proteins vol.36, pp.4, 2014, https://doi.org/10.1007/s00344-017-9687-5
  5. Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression vol.31, pp.2, 2019, https://doi.org/10.1007/s10811-018-1605-0
  6. Roles of Si and SiNPs in Improving Thermotolerance of Wheat Photosynthetic Machinery via Upregulation of PsbH, PsbB and PsbD Genes Encoding PSII Core Proteins vol.7, pp.2, 2014, https://doi.org/10.3390/horticulturae7020016