DOI QR코드

DOI QR Code

The Role of Macrophage Polarization in Infectious and Inflammatory Diseases

  • Labonte, Adam C. (Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia) ;
  • Tosello-Trampont, Annie-Carole (Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia) ;
  • Hahn, Young S. (Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia)
  • Received : 2013.12.14
  • Accepted : 2013.12.16
  • Published : 2014.04.30

Abstract

Macrophages, found in circulating blood as well as integrated into several tissues and organs throughout the body, represent an important first line of defense against disease and a necessary component of healthy tissue homeostasis. Additionally, macrophages that arise from the differentiation of monocytes recruited from the blood to inflamed tissues play a central role in regulating local inflammation. Studies of macrophage activation in the last decade or so have revealed that these cells adopt a staggering range of phenotypes that are finely tuned responses to a variety of different stimuli, and that the resulting subsets of activated macrophages play critical roles in both progression and resolution of disease. This review summarizes the current understanding of the contributions of differentially polarized macrophages to various infectious and inflammatory diseases and the ongoing effort to develop novel therapies that target this key aspect of macrophage biology.

Keywords

References

  1. Alfano, M., Graziano, F., Genovese, L., and Poli, G. (2013). Macrophage polarization at the crossroad between HIV-1 infection and cancer development. Arterioscler. Throm. Vas. Biol. 33, 1145-1152. https://doi.org/10.1161/ATVBAHA.112.300171
  2. Arranz, A., Doxaki, C., Vergadi, E., de la Torre, Y.M., Vaporidi, K., Lagoudaki, E.D., Ieronymaki, E., Androulidaki, A., Venihaki, M., Margioris, A.N., et al. (2012). Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA 109, 9517-9522. https://doi.org/10.1073/pnas.1119038109
  3. Avdic, S., Cao, J.Z., McSharry, B.P., Clancy, L.E., Brown, R., Steain, M., Gottlieb, D., Abendroth, A., and Slobedman, B. (2013). Human cytomegalovirus interleukin-10 polarizes monocytes toward a deactivated M2c phenotype to repress host immune responses. J. Virol. 87, 10273-1082. https://doi.org/10.1128/JVI.00912-13
  4. Beck, A.H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R.J., van de Rijn, M., and West, R.B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin. Cancer Res. 15, 778-787. https://doi.org/10.1158/1078-0432.CCR-08-1283
  5. Benoit, M., Desnues, B., and Mege, J.-L. (2008). Macrophage polarization in bacterial infections. J. Immunol. 181, 3733-3739. https://doi.org/10.4049/jimmunol.181.6.3733
  6. Bieghs, V., Wouters, K., van Gorp, P.J., Gijbels, M.J.J., de Winther, M.P.J., Binder, C.J., Lutjohann, D., Febbraio, M., Moore, K.J., van Bilsen, M., et al. (2010). Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 138, 2477-2486, 2486.e1-e3. https://doi.org/10.1053/j.gastro.2010.02.051
  7. Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896. https://doi.org/10.1038/ni.1937
  8. Biswas, S.K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112-22. https://doi.org/10.1182/blood-2005-01-0428
  9. Biswas, S.K., Sica, A., and Lewis, C.E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180, 2011-2017. https://doi.org/10.4049/jimmunol.180.4.2011
  10. Bradshaw, E.M., Raddassi, K., Elyaman, W., Orban, T., Gottlieb, P. A., Kent, S.C., and Hafler, D.A. (2009). Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J. Immunol. 183, 4432-4439. https://doi.org/10.4049/jimmunol.0900576
  11. Burke, A.P., Kolodgie, F.D., Zieske, A., Fowler, D.R., Weber, D.K., Varghese, P.J., Farb, A., and Virmani, R. (2004). Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Throm. Vas. Biol. 24, 1266-1271. https://doi.org/10.1161/01.ATV.0000131783.74034.97
  12. Byles, V., Covarrubias, A.J., Ben-Sahra, I., Lamming, D.W., Sabatini, D.M., Manning, B.D., and Horng, T. (2013). The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834.
  13. Cassetta, L., Cassol, E., and Poli, G. (2011). Macrophage polarization in health and disease. ScientificWorldJournal 11, 2391-2402. https://doi.org/10.1100/2011/213962
  14. Cassetta, L., Kajaste-Rudnitski, A., Coradin, T., Saba, E., Della Chiara, G., Barbagallo, M., Graziano, F., Alfano, M., Cassol, E., Vicenzi, E., et al. (2013). M1 polarization of human monocytederived macrophages restricts pre and postintegration steps of HIV-1 replication. AIDS 27, 1847-1856. https://doi.org/10.1097/QAD.0b013e328361d059
  15. Cassol, E., Cassetta, L., Alfano, M., and Poli, G. (2010). Macrophage polarization and HIV-1 infection. J. Leukoc. Biol. 87, 599-608. https://doi.org/10.1189/jlb.1009673
  16. Cassol, E., Cassetta, L., Rizzi, C., Gabuzda, D., Alfano, M., and Poli, G. (2013). Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin mediates HIV-1 infection of and transmission by M2a-polarized macrophages in vitro. AIDS 27, 707-716. https://doi.org/10.1097/QAD.0b013e32835cfc82
  17. Chacon-Salinas, R., Serafin-Lopez, J., Ramos-Payan, R., Mendez-Aragon, P., Hernandez-Pando, R., Van Soolingen, D., Flores- Romo, L., Estrada-Parra, S., and Estrada-Garcia, I. (2005). Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 140, 443-449. https://doi.org/10.1111/j.1365-2249.2005.02797.x
  18. Chan, G., Bivins-Smith, E.R., Smith, M.S., Smith, P.M., and Yurochko, A.D. (2008). Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J. Immunol. 181, 698-711. https://doi.org/10.4049/jimmunol.181.1.698
  19. Chang, N.C., Hung, S.I., Hwa, K.Y., Kato, I., Chen, J.E., Liu, C.H., and Chang, A.C. (2001). A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 276, 17497-17506. https://doi.org/10.1074/jbc.M010417200
  20. Chihara, T., Hashimoto, M., Osman, A., Hiyoshi-Yoshidomi, Y., Suzu, I., Chutiwitoonchai, N., Hiyoshi, M., Okada, S., and Suzu, S. (2012). HIV-1 proteins preferentially activate anti-inflammatory M2-type macrophages. J. Immunol. 188, 3620-3627. https://doi.org/10.4049/jimmunol.1101593
  21. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg, A.S., and Obin, M.S. (2005). Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347-2355. https://doi.org/10.1194/jlr.M500294-JLR200
  22. Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., Holen, I., MOnkkOnen, H., Boccadoro, M., Forni, G., et al. (2010). Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14, 2803-2815. https://doi.org/10.1111/j.1582-4934.2009.00926.x
  23. Coursey, T.G., Chen, P.W., and Niederkorn, J.Y. (2012). Abrogating TNF-${\alpha}$ expression prevents bystander destruction of normal itssues diruing iNOS-mediated elimination of intraocular tumors. Cancer Res. 71, 2445-2454.
  24. Csak, T., Ganz, M., Pespisa, J., Kodys, K., Dolganiuc, A., and Szabo, G. (2011). Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54, 133-144. https://doi.org/10.1002/hep.24341
  25. Daley, J.M., Brancato, S.K., Thomay, A.A., Reichner, J.S., and Albina, J.E. (2009). The phenotype of murine wound macrophages. J. Leukoc. Biol. 87, 59-67.
  26. Davies, L.C., Jenkins, S.J., Allen, J.E., and Taylor, P.R. (2013). Tissue-resident macrophages. Nat. Immunol. 14, 986-995. https://doi.org/10.1038/ni.2705
  27. Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two "hits"? Gastroenterology 114, 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  28. Devaraj, S., Glaser, N., Griffen, S., Wang-Polagruto, J., Miguelino, E., and Jialal, I. (2006). Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774-779. https://doi.org/10.2337/diabetes.55.03.06.db05-1417
  29. Diao, Y., Xin, Y., Zhou, Y., Li, N., Pan, X., Qi, S., Qi, Z., Xu, Y., Luo, L., Wan, H., et al. (2013). Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-${\kappa}B$ and MAPKs activation and ROS production. Int. Immunopharmacol. 18, 12-19.
  30. Donlan, R., and Costerton, J. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  31. Duffield, J. (2005). Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56-65. https://doi.org/10.1172/JCI200522675
  32. Duluc, D., Corvaisier, M., Blanchard, S., Catala, L., Descamps, P., Gamelin, E., Ponsoda, S., Delneste, Y, Hebbar, M., and Jeannin, P. (2009). Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer 125, 367-373. https://doi.org/10.1002/ijc.24401
  33. Dumont, P., Berton, A., Nagy, N., Sandras, F., Tinton, S., Demetter, P., Mascart, F., Allaoui, A., Decaestecker, C., and Salmon, I. (2008). Expression of galectin-3 in the tumor immune response in colon cancer. Lab. Invest. 88, 896-906. https://doi.org/10.1038/labinvest.2008.54
  34. Eguchi, J., Kong, X., Tenta, M., Wang, X., Kang, S., and Rosen, E. D. (2013). Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62, 3394-3403. https://doi.org/10.2337/db12-1327
  35. Eisele, N.A, Ruby, T., Jacobson, A., Manzanillo, P.S., Cox, J.S., Lam, L., Mukundan, L., Chawla, A., and Monack, D.M. (2013). Salmonella require the fatty acid regulator PPAR${\delta}$ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14, 171-182. https://doi.org/10.1016/j.chom.2013.07.010
  36. Farrell, G.C., Chitturi, S., Gan, L., and van Rooyen, D. (2012). NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 6, 149-171. https://doi.org/10.5009/gnl.2012.6.2.149
  37. Fenyo, I.M., and Gafencu, A.V. (2013). The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 218, 1376-1384. https://doi.org/10.1016/j.imbio.2013.06.005
  38. Fletcher, N., Sutaria, R., Jo, J., and Barnes, A. (2013). Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology (in press).
  39. Forster, S., Brandt, M., Mottok, D.S., Zschuttig, A., Zimmermann, K., Blattner, F.R., Gunzer, F., and POhlmann, C. (2013). Secretory expression of biologically active human Herpes virus interleukin-10 analogues in Escherichia coli via a modified Sec-dependent transporter construct. BMC Biotechnol., 13, 82. https://doi.org/10.1186/1472-6750-13-82
  40. Franks, T.J., Chong, P.Y., Chui, P., Galvin, J.R., Lourens, R.M., Reid, A.H., Selbs, E., Mcevoy, P.L., Hayden, D.L., Fukuoka, J., et al. (2003). Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 34, 743-748. https://doi.org/10.1016/S0046-8177(03)00367-8
  41. Gadang, V., Kohli, R., Myronovych, A., Hui, D.Y., Perez-Tilve, D., and Jaeschke, A. (2013). MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet. Am. J. Physiol. Endoc. Metab. 305, E549-556. https://doi.org/10.1152/ajpendo.00197.2013
  42. Gautier, E. L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K. G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128. https://doi.org/10.1038/ni.2419
  43. Ghavami, S., Shojaei, S., Yeganeh, B., Ande, S.R., Jangamreddy, J.R., Mehrpour, M., Christoffersson, J., Chaabane, W., Moghadam, A.R., Kashani, H.H., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112, 24-49. https://doi.org/10.1016/j.pneurobio.2013.10.004
  44. Gironella, M., Calvo, C., Fernandez, A., Closa, D., Iovanna, J.L., Rosello-Catafau, J., and Folch-Puy, E. (2013). $Reg3{\beta}$ deficiency impairs pancreatic tumor growth by skewing macrophage polarization. Cancer Res. 73, 5682-5694. https://doi.org/10.1158/0008-5472.CAN-12-3057
  45. Gobeil, L.A., Lodge, R., and Tremblay, M.J. (2012). Differential HIV-1 endocytosis and susceptibility to virus infection in human macrophages correlate with cell activation status. J. Virol. 86, 10399-10407. https://doi.org/10.1128/JVI.01051-12
  46. Goh, Y.P.S., Chawla, A., and Nguyen, K.D. (2011). Macrophagemediated inflammation in metabolic disease. Nat. Rev. Immunol. 11, 738-749. https://doi.org/10.1038/nri3071
  47. Gomez Perdiguero, E., and Geissmann, F. (2013). Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb. Symp. Quant. Biol. [Epub ahead of print].
  48. Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35. https://doi.org/10.1038/nri978
  49. Hajizadeh, M.R., Mokarram, P., Kamali-Sarvestani, E., Bolhassani, A., and Mostafavi-Pour, Z. (2013). Recombinant nonstructural 3 protein, rNS3, of hepatitis C virus along with recombinant GP96 induce IL-12, $TNF{\alpha}$ and ${\alpha}5$ integrin expression in antigen presenting cells. Hepat. Mon. 13, e8104.
  50. Hanke, M.L., Heim, C.E., Angle, A., Sanderson, S.D., and Kielian, T. (2013). Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J. Immunol. 190, 2159-2168. https://doi.org/10.4049/jimmunol.1202348
  51. Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., et al. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179-185.
  52. Henao-Mejia, J., Elinav, E., Thaiss, C.A., and Flavell, R.A. (2013). Inflammasomes and metabolic disease. Annu. Rev. Physiol. [Epub ahead of print].
  53. Heusinkveld, M., de Vos van Steenwijk, P.J., Goedemans, R., Ramwadhdoebe, T.H., Gorter, A., Welters, M.J.P., van Hall, T., and van der Burg, S.H. (2011). M2 macrophages induced by prosta-glandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol. 187, 1157-1165. https://doi.org/10.4049/jimmunol.1100889
  54. Heydtmann, M. (2009). Macrophages in hepatitis B and hepatitis C virus infections. J. Virol. 83, 2796-2802. https://doi.org/10.1128/JVI.00996-08
  55. Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
  56. Hu, X., Chen, J., Wang, L., and Ivashkiv, L.B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukoc. Biol. 82, 237-243. https://doi.org/10.1189/jlb.1206763
  57. Huang, Z., Zhang, Z., Jiang, Y., Zhang, D., Chen, J., Dong, L., and Zhang, J. (2012). Targeted delivery of oligonucleotides into tumorassociated macrophages for cancer immunotherapy. J. Control Release 158, 286-292. https://doi.org/10.1016/j.jconrel.2011.11.013
  58. Hume, D.A. (2008). Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol. 1, 432-441. https://doi.org/10.1038/mi.2008.36
  59. Jenner, R.G., and Young, R.A. (2005). Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol. 3, 281-294. https://doi.org/10.1038/nrmicro1126
  60. Ji, W.J., Ma, Y.Q., Zhou, X., Zhang, Y.D., Lu, R.Y., Sun, H.Y., Guo, Z.Z., Zhang, Z., Li, Y.M., and Wei, L.Q. (2013). Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J. Immunol. Methods pii: S0022-1759(13)00328-1.
  61. Jouanguy, E., DOffinger, R., Dupuis, S., Pallier, A., Altare, F., and Casanova, J.L. (1999). IL-12 and $IFN-{\gamma}$ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346-351. https://doi.org/10.1016/S0952-7915(99)80055-7
  62. Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliot, M.R., Gruber, F., Han, J., Chen, W., et al. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Cir. Res. 107, 737-746. https://doi.org/10.1161/CIRCRESAHA.109.215715
  63. Kang, K., Reilly, S.M., Karabacak, V., Gangl, M.R., Fitzgerald, K., Hatano, B., and Lee, C.-H. (2008). Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485-495. https://doi.org/10.1016/j.cmet.2008.04.002
  64. Kanneganti, T.D., and Dixit, V.D. (2012). Immunological complications of obesity. Nat. Immunol. 13, 707-712. https://doi.org/10.1038/ni.2343
  65. Karlmark, K.R., Weiskirchen, R., Zimmermann, H.W., Gassler, N., Ginhoux, F., Weber, C., Merad, M., Luedde, T., Trautwein, C., and Tacke, F. (2009). Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261-274. https://doi.org/10.1002/hep.22950
  66. Kiszewski, A.E., Becerril, E., Aguilar, L.D., Kader, I.T.A., Myers, W., Portaels, F., and Hernandez Pando, R. (2006). The local immune response in ulcerative lesions of Buruli disease. Clin. Exp. Immunol. 143, 445-451. https://doi.org/10.1111/j.1365-2249.2006.03020.x
  67. Klein, I., Cornejo, J.C., Polakos, N.K., John, B., Wuensch, S.A., Topham, D.J., Pierce, R.H., and Crispe, I.N. (2007). Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 110, 4077-4085. https://doi.org/10.1182/blood-2007-02-073841
  68. Klimp, A.H., de Vries, E.G.E., Scherphof, G.L., and Daemen, T. (2002). A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44, 143-161. https://doi.org/10.1016/S1040-8428(01)00203-7
  69. Krausgruber, T., Blazek, K., Smallie, T., Alzabin, S., Lockstone, H., Sahgal, N., Hussell, T., Feldmann, M., and Udalova, I.A. (2011). IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231-238. https://doi.org/10.1038/ni.1990
  70. Lavanchy, D. (2011). Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 17, 107-115. https://doi.org/10.1111/j.1469-0691.2010.03432.x
  71. Lawrence, T., and Natoli, G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750-761. https://doi.org/10.1038/nri3088
  72. Leitinger, N., and Schulman, I.G. (2013). Phenotypic polarization of macrophages in atherosclerosis. Arterioscler. Throm. Vas. Biol. 33, 1120-1126. https://doi.org/10.1161/ATVBAHA.112.300173
  73. Leman, L.J., Maryanoff, B.E., and Ghadiri, M.R. (2013). Molecules that mimic apolipoprotein A-I: potential agents for treating Atherosclerosis. J. Med. Chem. (in press).
  74. Liao, X., Sharma, N., and Kapadia, F. (2011). Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736-2749. https://doi.org/10.1172/JCI45444
  75. Liu, H., Perlman, H., Pagliari, L.J., and Pope, R.M. (2001). Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J. Exp. Med. 194, 113-126. https://doi.org/10.1084/jem.194.2.113
  76. Liu, C.Y., Xu, J.Y., Shi, X.Y., Huang, W., Ruan, T.Y., Xie, P., and Ding, J.L. (2013). M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Invest. 93, 844-854. https://doi.org/10.1038/labinvest.2013.69
  77. Lugo-Villarino, G., Verollet, C., Maridonneau-Parini, I., and Neyrolles, O. (2011). Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV. Front. Immunol. 2, 43.
  78. Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175-184. https://doi.org/10.1172/JCI29881
  79. Lumeng, C.N., Deyoung, S.M., Bodzin, J.L., and Saltiel, A.R. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16-23. https://doi.org/10.2337/db06-1076
  80. Luyendyk, J.P., Schabbauer, G.A., Tencati, M., Holscher, T., Pawlinski, R., and Mackman, N. (2008). Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J. Immunol. 180, 4218-4226. https://doi.org/10.4049/jimmunol.180.6.4218
  81. Majai, G., Kiss, E., Tarr, T., Zahuczky, G., Hartman, Z., Szegedi, G., and Fesus, L. (2014). Decreased apopto-phagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus 23, 133-145. https://doi.org/10.1177/0961203313511557
  82. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677-686. https://doi.org/10.1016/j.it.2004.09.015
  83. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176-185. https://doi.org/10.1002/path.4133
  84. Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Front. Biosci. 13, 453-461. https://doi.org/10.2741/2692
  85. Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451-483. https://doi.org/10.1146/annurev.immunol.021908.132532
  86. Mercalli, A., Calavita, I., Dugnani, E., Citro, A., Cantarelli, E., Nano, R., Melzi, R., Maffi, P., Secchi, A., Sordi, V., et al. (2013). Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140, 179-190. https://doi.org/10.1111/imm.12126
  87. Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166-6173. https://doi.org/10.4049/jimmunol.164.12.6166
  88. Miura, K, Kodama, Y., Inokuchi, S., Schnabl, B., Aoyama, T., Ohnishi, H., Olefsky, J.M., Brenner, D.A., and Seki, E. (2010). Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin-1 beta in mice. Gastroenterology 139, 323-U453. https://doi.org/10.1053/j.gastro.2010.03.052
  89. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H., and Seki, E. (2012). Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310-G1321. https://doi.org/10.1152/ajpgi.00365.2011
  90. Miura, K., Yang, L., van Rooijen, N., Brenner, D.A., Ohnishi, H., and Seki, E. (2013). Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57, 577-589. https://doi.org/10.1002/hep.26081
  91. Monini, P., Colombini, S., Sturzl, M., Goletti, D., Cafaro, A., Sgadari, C., Butto, S., Franco, M., Leone, P., Fais, S., et al. (1999). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93, 4044-4058.
  92. Moreno, J.L., Kaczmarek, M., Keegan, A.D., and Tondravi, M. (2003). IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078-1086. https://doi.org/10.1182/blood-2002-11-3437
  93. Mosser, D. (2003). The many faces of macrophage activation. J. Leukoc. Biol. 73, 209-212. https://doi.org/10.1189/jlb.0602325
  94. Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969. https://doi.org/10.1038/nri2448
  95. Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737. https://doi.org/10.1038/nri3073
  96. Mylonas, K.J., Nair, M.G., Prieto-Lafuente, L., Paape, D., and Allen, J.E. (2009). Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol. 182, 3084-3094. https://doi.org/10.4049/jimmunol.0803463
  97. Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., Lander, E.S., and Young, R.A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99, 1503-1508. https://doi.org/10.1073/pnas.022649799
  98. Neyen, C., Mukhopadhyay, S., Gordon, S., and Hagemann, T. (2013). An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: a prospective anticancer treatment? Oncoimmunology 2, e24461. https://doi.org/10.4161/onci.24461
  99. Niino, D., Komohara, Y., Murayama, T., Aoki, R., Kimura, Y., Hashikawa, K., Kiyasu, J., Takeuchi, M., Suefuji, N., Sugita, Y., et al. (2010). Ratio of M2 macrophage expression is closely associated with poor prognosis for Angioimmunoblastic T-cell lymphoma (AITL). Pathol. Int. 60, 278-283. https://doi.org/10.1111/j.1440-1827.2010.02514.x
  100. Oberg, A., Samii, S., Stenling, R., and Lindmark, G. (2002). Different occurrence of CD8+, CD45R0+, and CD68+ immune cells in regional lymph node metastases from colorectal cancer as potential prognostic predictors. Int. J. Colorectal Dis. 17, 25-29. https://doi.org/10.1007/s003840100337
  101. Obstfeld, A.E., Sugaru, E., Thearle, M., Francisco, A.M., Gayet, C., Ginsberg, H.N., Ables, E.V., and Ferrante, A.W. (2010). C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916-925. https://doi.org/10.2337/db09-1403
  102. Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., Morel, C.R., Subramanian, V., Mukundan, L., Red Eagle, A., Vats, D., Brombacher, F., Ferrante, A.W., et al. (2007). Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116-1120. https://doi.org/10.1038/nature05894
  103. Olefsky, J.M., and Glass, C.K. (2010). Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  104. Otto, M. (2008). Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207-228.
  105. Paciello, I., Silipo, A., Lembo-fazio, L., Curcuru, L., Zumsteg, A., Noel, G., Ciancarella, V., Sturiale, L., Molinaro, A., and Bernardini, M.L. (2013). Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc. Natl. Acad. Sci. USA 110, E4345-4354. https://doi.org/10.1073/pnas.1303641110
  106. Page, C., Goicochea, L., Matthews, K., Zhang, Y., Klover, P., Holtzman, M.J., Hennighausen, L., and Frieman, M. (2012). Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J. Virol. 86, 13334-13349. https://doi.org/10.1128/JVI.01689-12
  107. Peiris, J.S.M., Chu, C.M., Cheng, V.C.C., Chan, K.S., Hung, I.F.N., Poon, L.L.M., Law, K.I., Tang, B.S., Hon, T.Y., Chan, C.S., et al. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767-1772. https://doi.org/10.1016/S0140-6736(03)13412-5
  108. Poglitsch, M., Weichhart, T., Hecking, M., Werzowa, J., Katholnig, K., Antlanger, M., Krmpotic, A, Jonjic, S., HOrl, W.H., Zlabinger, G.J., et al. (2012). CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 12, 1458-1468. https://doi.org/10.1111/j.1600-6143.2012.04002.x
  109. Qin, H., Holdbrooks, A.T., Liu, Y., Reynolds, S.L., Yanagisawa, L.L., and Benveniste, E.N. (2012a). SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol. 189, 3439-3448. https://doi.org/10.4049/jimmunol.1201168
  110. Qin, H., Yeh, W.I., De Sarno, P., Holdbrooks, A.T., Liu, Y., Muldowney, M.T., Reynolds, S.L., Yanagisawa, L.L., Fox, T.H., Park, K., et al. (2012b). Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc. Natl. Acad. Sci. USA 109, 5004-5009. https://doi.org/10.1073/pnas.1117218109
  111. Racanelli, V., and Rehermann, B. (2006). The liver as an immunological organ. Hepatology 43, S54-S62. https://doi.org/10.1002/hep.21060
  112. Raes, G., De Baetselier, P., Noel, W., Beschin, A., Brombacher, F., and Hassanzadeh Gh, G. (2002). Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J. Leukoc. Biol. 71, 597-602.
  113. Raes, G., Van den Bergh, R., De Baetselier, P., Ghassabeh, G.H., Scotton, C., Locati, M., Mantovani, A., and Sozzani, S. (2005). Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J. Immunol. 174, 6561-6562. https://doi.org/10.4049/jimmunol.174.11.6561
  114. Rauch, I., Muller, M., and Decker, T. (2013). The regulation of inflammation by interferons and their STATs. JAKSTAT 2, e23820.
  115. Rawlings, J.S., Rosler, K.M., and Harrison, D.A. (2004). The JAK/ STAT signaling pathway. J. Cell Sci. 117, 1281-1283. https://doi.org/10.1242/jcs.00963
  116. Rius, B., Lopez-Vicario, C., Gonzalez-Periz, A., Moran-Salvador, E., Garcia-Alonso, V., Claria, J., and Titos, E. (2012). Resolution of inflammation in obesity-induced liver disease. Front. Immunol. 3, 257.
  117. Roh, Y.S., and Seki, E. (2013). Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J. Gastroenterol. Hepatol. 28, 38-42.
  118. Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Sguadrito, M.L., Segura, I., Li, X., Knevels, E., et al. (2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44. https://doi.org/10.1016/j.ccr.2010.11.009
  119. Rottenberg, M.E., Gigliotti-Rothfuchs, A., and Wigzell, H. (2002). The role of IFN-gamma in the outcome of chlamydial infection. Curr. Opin. Immunol. 14, 444-451. https://doi.org/10.1016/S0952-7915(02)00361-8
  120. Schaale, K., Brandenburg, J., Kispert, A., Leitges, M., Ehlers, S., and Reiling, N. (2013). Wnt6 is expressed in granulomatous lesions of mycobacterium tuberculosis-infected mice and is involved in macrophage differentiation and proliferation. J. Immunol. 191, 5182-5195. https://doi.org/10.4049/jimmunol.1201819
  121. Schmieder, A., Michel, J., SchOnhaar, K., Goerdt, S., and Schledzewski, K. (2012). Differentiation and gene expression profile of tumor-associated macrophages. Semin. Cancer. Biol. 22, 289-297. https://doi.org/10.1016/j.semcancer.2012.02.002
  122. Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M., Wu, B., Jacobsen, S.E., Pollard, J.W., et al. (2012). A lineage of myeloid cells independent of Myb and Hematopoietic stem cells. Science 336, 86-90. https://doi.org/10.1126/science.1219179
  123. Schwabe, R.F., and Brenner, D.A. (2006). Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G583-G589. https://doi.org/10.1152/ajpgi.00422.2005
  124. Schwabe, R.F., Seki, E., and Brenner, D.A. (2006). Toll-like receptor signaling in the liver. Gastroenterology 130, 1886-900. https://doi.org/10.1053/j.gastro.2006.01.038
  125. Shanmugam, N., Gaw Gonzalo, I.T., and Natarajan, R. (2004). Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53, 795-802. https://doi.org/10.2337/diabetes.53.3.795
  126. Shaughnessy, L.M., and Swanson, J.A. (2007). The role of the activated macrophage in clearing Listeria monocytogenes infection. Front. Biosci. 12, 2683-2692. https://doi.org/10.2741/2364
  127. Shirakawa, T., Kawazoe, Y., Tsujikawa, T., Jung, D., Sato, S., and Uesugi, M. (2011). Deactivation of STAT6 through serine 707 phosphorylation by JNK. J. Biol. Chem. 286, 4003-4010. https://doi.org/10.1074/jbc.M110.168435
  128. Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 22, 787-795.
  129. Sica, A., Saccani, A., and Mantovani, A. (2002). Tumor-associated macrophages: a molecular perspective. Int. Immunopharmacol. 2, 1045-1054. https://doi.org/10.1016/S1567-5769(02)00064-4
  130. Sica, A, Invernizzi, P., and Mantovani, A. (2013). Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology [In Press].
  131. Smith, M., and Bentz, G. (2004a). Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J. Virol. 78, 4444-4453. https://doi.org/10.1128/JVI.78.9.4444-4453.2004
  132. Smith, M., and Bentz, G. (2004b). HCMV activates PI (3) K in monocytes and promotes monocyte motility and transendothelial migration in a PI (3) K-dependent manner. J. Leukoc. Biol. 76, 65-76. https://doi.org/10.1189/jlb.1203621
  133. Song, Y., Dou, H., Gong, W., Liu, X., Yu, Z., Li, E., Tan, R., and Hou, Y. (2013). Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur. J. Pharmacol. 705, 49-60. https://doi.org/10.1016/j.ejphar.2013.02.008
  134. Stolfi, C., Caruso, R., Franze, E., Sarra, M., De Nitto, D., Rizzo, A., Pallone, F., and Monteleone, G. (2011). Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology 132, 66-77. https://doi.org/10.1111/j.1365-2567.2010.03340.x
  135. Stout, R.D., Jiang, C., Matta, B., Tietzel, I., Watkins, S.K., and Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 175, 342-349. https://doi.org/10.4049/jimmunol.175.1.342
  136. Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76, 509-513. https://doi.org/10.1189/jlb.0504272
  137. Sun, K., Kusminski, C.M., and Scherer, P.E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094-2101. https://doi.org/10.1172/JCI45887
  138. Sun, H., Sun, Y., Pu, J., Zhang, Y., Zhu, Q., Li, J., Gu, J., Chang, K. C., and Liu, J. (2013). Comparative virus replication and host innate response in human cells infected with 3 prevalent clades (2.3.4, 2.3.2 and 7) of highly pathogenic avian influenza H5N1 viruses. J. Virol. 88, 725-729.
  139. Takai, H., Ashihara, M., Ishiguro, T., Terashima, H., Watanabe, T., Kato, A., and Suzuki, M. (2009a). Involvement of glypican-3 in the recruitment of M2-polarized tumor-associated macrophages in hepatocellular carcinoma. Cancer Biol. Ther. 8, 2329-2338.
  140. Takai, H., Kato, A., Kato, C., Watanabe, T., Matsubara, K., Suzuki, M., and Kataoka, H. (2009b). The expression profile of glypican-3 and its relation to macrophage population in human hepatocellular carcinoma. Liver Int. 29, 1056-1064. https://doi.org/10.1111/j.1478-3231.2008.01968.x
  141. Tateya, S., Kim, F., and Tamori, Y. (2013). Recent advances in obesity-induced inflammation and insulin resistance. Front. Endocrinol. 4, 93.
  142. Thomson, A.W., and Knolle, P.A. (2010). Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753-766. https://doi.org/10.1038/nri2858
  143. Thurlow, L.R., Hanke, M.L., Fritz, T., Angle, A., Aldrich, A., Williams, S.H., Engebretsen, I.L., Bayles, K.W., Horswill, A.R., and Kielian, T. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 186, 6585-6596. https://doi.org/10.4049/jimmunol.1002794
  144. Tilg, H., and Moschen, A.R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836-1846. https://doi.org/10.1002/hep.24001
  145. Tosello-Trampont, A.C., Landes, S.G., Nguyen, V., Novobrantseva, T.I., and Hahn, Y.S. (2012). Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-${\alpha}$ production. J. Biol. Chem. 287, 40161-40172. https://doi.org/10.1074/jbc.M112.417014
  146. Umemura, N., Saio, M., Suwa, T., Kitoh, Y., Bai, J., Nonaka, K., Ouyang, G.F., Okada, M., Balazs, M., Adany, R., et al. (2008). Tumorinfiltrating myeloid-derived suppressor cells are pleiotropicinflamed monocytes/macrophages that bear M1-and M2-type characteristics. J. Leukoc. Biol. 83, 1136-1144. https://doi.org/10.1189/jlb.0907611
  147. Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Wall-Malefyt, R., and Ottenhoff, T.H. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 101, 4560-4565. https://doi.org/10.1073/pnas.0400983101
  148. Villares, R., Kakabadse, D., Juarranz, Y., Gomariz, R.P., Martinez-A.C., and Mellado, M. (2013). Growth hormone prevents the development of autoimmune diabetes. Proc. Natl. Acad. Sci. USA 101, 4619-4627.
  149. Wang, J., Li, F., Sun, R., Gao, X., Wei, H., Li, L.-J., and Tian, Z. (2013). Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 4, 2106.
  150. Weichhart, T., and Saemann, M.D. (2008). The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann. Rheum. Dis. 67 Suppl 3, iii70-4. https://doi.org/10.1136/ard.2006.068403
  151. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796-1808. https://doi.org/10.1172/JCI200319246
  152. Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R.L., and Ferrante, A.W. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115-124. https://doi.org/10.1172/JCI24335
  153. Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. https://doi.org/10.1038/nature12034
  154. Xu, H., Zhu, J., Smith, S., Foldi, J., Zhao, B., Chung, A.Y., Oultz, H., Kitajewski, J., Shi, C., Weber, S., et al. (2012). Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642-650. https://doi.org/10.1038/ni.2304
  155. Xu, F., Kang, Y., Zhang, H., Piao, Z., Yin, H., Diao, R., Xia, J., and Shi, L. (2013). Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J. Infect. Dis. 208, 528-538. https://doi.org/10.1093/infdis/jit177
  156. Yin, M.J., Yamamoto, Y., and Gaynor, R.B. (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77-80. https://doi.org/10.1038/23948
  157. You, Q., Holt, M., Yin, H., Li, G., Hu, C.-J., and Ju, C. (2013). Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 86, 836-843. https://doi.org/10.1016/j.bcp.2013.07.006
  158. Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z.W., Karin, M., and Shoelson, S.E. (2001). Reversal of obesity-and dietinduced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673-1677. https://doi.org/10.1126/science.1061620
  159. Zhou, Q., Peng, R.-Q., Wu, X.-J., Xia, Q., Hou, J.-H., Ding, Y., Zhou, Q.M., Zhang, X., Pang, Z.Z., Wan, D.S., et al. (2010). The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J. Transl. Med. 8, 13. https://doi.org/10.1186/1479-5876-8-13
  160. Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., and Li, J. (2013). Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell. Signal. 26, 192-197.
  161. Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., and Gill, S.R. (2013). Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601-609. https://doi.org/10.1002/hep.26093

Cited by

  1. Macrophage polarization in response to oral commensals and pathogens vol.74, pp.3, 2016, https://doi.org/10.1093/femspd/ftw011
  2. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis vol.2015, 2015, https://doi.org/10.1155/2015/851252
  3. Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function vol.38, pp.1, 2016, https://doi.org/10.3892/ijmm.2016.2583
  4. Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis vol.22, pp.2, 2017, https://doi.org/10.1111/resp.12949
  5. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation vol.18, pp.1, 2017, https://doi.org/10.1186/s12931-017-0577-y
  6. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine vol.105, 2016, https://doi.org/10.1016/j.rvsc.2016.01.014
  7. Intracellular Iron Chelation Modulates the Macrophage Iron Phenotype with Consequences on Tumor Progression vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0166164
  8. Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases vol.17, pp.6, 2015, https://doi.org/10.1016/j.jcyt.2015.02.006
  9. Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice vol.115, pp.06, 2016, https://doi.org/10.1017/S0007114516000027
  10. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00301
  11. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFκB Pathway Suppression vol.2016, 2016, https://doi.org/10.1155/2016/4847812
  12. Selective modulation of microglia polarization to M2 phenotype for stroke treatment vol.25, pp.2, 2015, https://doi.org/10.1016/j.intimp.2015.02.019
  13. Polarization of tumor-associated macrophages and Gas6/Axl signaling in oral squamous cell carcinoma vol.51, pp.7, 2015, https://doi.org/10.1016/j.oraloncology.2015.04.004
  14. Diverse functional roles of lipocalin-2 in the central nervous system vol.49, 2015, https://doi.org/10.1016/j.neubiorev.2014.12.006
  15. M2A and M2C Macrophage Subsets Ameliorate Inflammation and Fibroproliferation in Acute Lung Injury Through Interleukin 10 Pathway vol.48, pp.1, 2017, https://doi.org/10.1097/SHK.0000000000000820
  16. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0125
  17. Double Roles of Macrophages in Human Neuroimmune Diseases and Their Animal Models vol.2016, 2016, https://doi.org/10.1155/2016/8489251
  18. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals vol.13, pp.1, 2015, https://doi.org/10.1186/s12989-016-0140-x
  19. Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis vol.64, pp.1, 2016, https://doi.org/10.1016/j.jhep.2015.08.020
  20. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells to different stimuli vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0181256
  21. Recombinant expression of Epinephelus lanceolatus serum amyloid A (ElSAA) and analysis of its macrophage modulatory activities vol.64, 2017, https://doi.org/10.1016/j.fsi.2017.03.032
  22. Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment vol.39, pp.3, 2015, https://doi.org/10.1038/ijo.2014.124
  23. Nur77 deficiency leads to systemic inflammation in elderly mice vol.12, pp.1, 2015, https://doi.org/10.1186/s12950-015-0085-0
  24. AMPK-Activated Protein Kinase Suppresses Ccr2 Expression by Inhibiting the NF-κB Pathway in RAW264.7 Macrophages vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147279
  25. Targeting androgen receptor with ASC-J9 attenuates cardiac injury and dysfunction in experimental autoimmune myocarditis by reducing M1-like macrophage vol.485, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2017.02.123
  26. Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues vol.44, pp.7, 2015, https://doi.org/10.3109/08820139.2015.1070269
  27. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response vol.46, pp.2, 2016, https://doi.org/10.1097/SHK.0000000000000604
  28. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00514
  29. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129744
  30. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells vol.17, pp.7, 2016, https://doi.org/10.3390/ijms17071175
  31. Cholesterol reduction and macrophage function vol.28, pp.5, 2017, https://doi.org/10.1097/MOL.0000000000000444
  32. Blockade of TGF-β-activated kinase 1 prevents advanced glycation end products-induced inflammatory response in macrophages vol.78, 2016, https://doi.org/10.1016/j.cyto.2015.11.023
  33. The periodontal war: microbes and immunity vol.75, pp.1, 2017, https://doi.org/10.1111/prd.12222
  34. Reprint of: Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases vol.17, pp.9, 2015, https://doi.org/10.1016/j.jcyt.2015.07.014
  35. Myeloperoxidase-Oxidized LDLs Enhance an Anti-Inflammatory M2 and Antioxidant Phenotype in Murine Macrophages vol.2016, 2016, https://doi.org/10.1155/2016/8249476
  36. Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections vol.6, pp.1, 2016, https://doi.org/10.1038/srep37211
  37. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture vol.358, pp.2, 2017, https://doi.org/10.1016/j.yexcr.2017.07.014
  38. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway vol.2015, 2015, https://doi.org/10.1155/2015/732450
  39. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144954
  40. Effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages vol.80, 2017, https://doi.org/10.1016/j.archoralbio.2017.03.010
  41. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis vol.59, 2016, https://doi.org/10.1016/j.dci.2016.01.010
  42. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0143735
  43. Expression of scavenger receptor-AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis vol.65, pp.1, 2017, https://doi.org/10.1002/hep.28873
  44. Identification of Differentially Expressed Long Non-coding RNAs in Polarized Macrophages vol.6, pp.1, 2016, https://doi.org/10.1038/srep19705
  45. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD 2017, https://doi.org/10.1038/nrgastro.2017.101
  46. Human newborn bacille Calmette–Guérin vaccination and risk of tuberculosis disease: a case-control study vol.14, pp.1, 2016, https://doi.org/10.1186/s12916-016-0617-3
  47. Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143952
  48. High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway vol.65, pp.8, 2016, https://doi.org/10.1007/s00011-016-0948-8
  49. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00614
  50. Characterization of the anti-inflammatory properties of NCX 429, a dual-acting compound releasing nitric oxide and naproxen vol.126, 2015, https://doi.org/10.1016/j.lfs.2015.01.025
  51. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis 2017, https://doi.org/10.1089/ten.TEA.2017.0232
  52. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00103-0
  53. Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1 vol.129, pp.21, 2017, https://doi.org/10.1182/blood-2016-09-742825
  54. NKp46+natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice vol.63, pp.3, 2016, https://doi.org/10.1002/hep.28389
  55. Pivotal regulators of tissue homeostasis and cancer: macrophages vol.6, pp.1, 2017, https://doi.org/10.1186/s40164-017-0083-4
  56. HDAC6 Deacetylase Activity Is Critical for Lipopolysaccharide-Induced Activation of Macrophages vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110718
  57. Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors vol.38, pp.2, 2016, https://doi.org/10.3892/ijmm.2016.2656
  58. Fraxinus xanthoxyloides leaves reduced the level of inflammatory mediators during in vitro and in vivo studies vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1189-7
  59. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions vol.222, pp.2, 2017, https://doi.org/10.1016/j.imbio.2016.08.010
  60. Pioglitazone alleviates inflammation in diabetic mice fed a high-fat diet via inhibiting advanced glycation end-product-induced classical macrophage activation vol.283, pp.12, 2016, https://doi.org/10.1111/febs.13735
  61. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages vol.2017, 2017, https://doi.org/10.1155/2017/5281358
  62. The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages vol.38, pp.1, 2015, https://doi.org/10.14348/molcells.2015.2136
  63. Role of apoptosis and autophagy in tuberculosis vol.313, pp.2, 2017, https://doi.org/10.1152/ajplung.00162.2017
  64. Microbial Interactions with the Intestinal Epithelium and Beyond: Focusing on Immune Cell Maturation and Homeostasis vol.6, pp.1, 2018, https://doi.org/10.1007/s40139-018-0165-y
  65. Surface functionalization of electrospun scaffolds using recombinant human decorin attracts circulating endothelial progenitor cells vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-18382-y
  66. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis vol.9, pp.12, 2018, https://doi.org/10.1007/s13238-018-0505-z
  67. Injury, repair, inflammation and metaplasia in the stomach vol.596, pp.17, 2018, https://doi.org/10.1113/JP275512
  68. leaves in macrophage functions vol.29, pp.1, 2018, https://doi.org/10.1080/09540105.2017.1386163
  69. The role of mononuclear phagocytes in Ebola virus infection vol.104, pp.4, 2018, https://doi.org/10.1002/JLB.4RI0518-183R
  70. Chemopreventive Effects of Phytochemicals and Medicines on M1/M2 Polarized Macrophage Role in Inflammation-Related Diseases vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082208
  71. Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis vol.2018, pp.1466-1861, 2018, https://doi.org/10.1155/2018/4286364
  72. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2 vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4299-4
  73. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2–Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00036
  74. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2 vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00087
  75. Withaferin A Associated Differential Regulation of Inflammatory Cytokines vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00195
  76. Ginsenoside Rg3 Mitigates Atherosclerosis Progression in Diabetic apoE–/– Mice by Skewing Macrophages to the M2 Phenotype vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00464
  77. Hypoxia, Metabolism and Immune Cell Function vol.6, pp.2, 2018, https://doi.org/10.3390/biomedicines6020056
  78. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide vol.18, pp.1, 2018, https://doi.org/10.1186/s12903-018-0511-9
  79. M(IL-4) Tissue Macrophages Support Efficient Interferon-Gamma Production in Antigen-Specific CD8 + T Cells with Reduced Proliferative Capacity vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.01629
  80. Erythropoietin Attenuates Postoperative Cognitive Dysfunction by Shifting Macrophage Activation toward the M2 Phenotype vol.8, pp.None, 2017, https://doi.org/10.3389/fphar.2017.00839
  81. Human Immunology of Tuberculosis vol.5, pp.1, 2014, https://doi.org/10.1128/microbiolspec.tbtb2-0016-2016
  82. Identification of compounds that decrease numbers of Mycobacteria in human macrophages in the presence of serum amyloid P vol.102, pp.3, 2017, https://doi.org/10.1189/jlb.1a0317-118rr
  83. Advanced glycation end products impair NLRP3 inflammasome–mediated innate immune responses in macrophages vol.292, pp.50, 2017, https://doi.org/10.1074/jbc.m117.806307
  84. Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics vol.5, pp.2, 2018, https://doi.org/10.1080/23737867.2018.1430518
  85. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization vol.19, pp.None, 2014, https://doi.org/10.1186/s12931-017-0708-5
  86. Modular bioinformatics analysis demonstrates that a Toll-like receptor signaling pathway is involved in the regulation of macrophage polarization vol.18, pp.5, 2014, https://doi.org/10.3892/mmr.2018.9486
  87. Ebola virus secreted glycoprotein decreases the anti-viral immunity of macrophages in early inflammatory responses vol.324, pp.None, 2014, https://doi.org/10.1016/j.cellimm.2017.11.009
  88. Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes vol.13, pp.3, 2014, https://doi.org/10.1371/journal.pone.0192680
  89. Tobacco and Antiretrovirals Modulate Transporter, Metabolic Enzyme, and Antioxidant Enzyme Expression and Function in Polarized Macrophages vol.16, pp.5, 2014, https://doi.org/10.2174/1570162x17666190130114531
  90. M1 Macrophage Polarization Is Dependent on TRPC1-Mediated Calcium Entry vol.8, pp.None, 2014, https://doi.org/10.1016/j.isci.2018.09.014
  91. Bone marrow-derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response vol.56, pp.7, 2018, https://doi.org/10.1093/mmy/myx128
  92. Microfluidics‐Assisted Fabrication of Microtissues with Tunable Physical Properties for Developing an In Vitro Multiplex Tissue Model vol.2, pp.12, 2014, https://doi.org/10.1002/adbi.201800236
  93. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pone.0208132
  94. Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages vol.24, pp.45, 2014, https://doi.org/10.3748/wjg.v24.i45.5131
  95. Blockade Effects of Anti-Interferon- (IFN-) γ Autoantibodies on IFN-γ-Regulated Antimicrobial Immunity vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/1629258
  96. Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.01724
  97. Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.03157
  98. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview vol.9, pp.None, 2019, https://doi.org/10.3389/fonc.2019.00421
  99. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases vol.13, pp.None, 2014, https://doi.org/10.3389/fnins.2019.00869
  100. Mannose-decorated hybrid nanoparticles for enhanced macrophage targeting vol.17, pp.None, 2019, https://doi.org/10.1016/j.bbrep.2019.01.007
  101. In Vivo Choroidal Neovascularization and Macrophage Studies Provide Further Evidence for a Broad Role of Prostacyclin in Angiogenesis vol.35, pp.2, 2014, https://doi.org/10.1089/jop.2018.0077
  102. Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8+ T-Cell Dysfunction vol.8, pp.4, 2014, https://doi.org/10.3390/cells8040374
  103. Lactobacillus fermentum and its potential immunomodulatory properties vol.56, pp.None, 2014, https://doi.org/10.1016/j.jff.2019.02.044
  104. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells vol.115, pp.None, 2014, https://doi.org/10.1016/j.biopha.2019.108861
  105. Microbes, metabolites, and the gut-lung axis vol.12, pp.4, 2019, https://doi.org/10.1038/s41385-019-0160-6
  106. Macrophage heterogeneity and plasticity in tuberculosis vol.106, pp.2, 2019, https://doi.org/10.1002/jlb.mr0318-095rr
  107. Decorin Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Induces Macrophage Polarization via CD44 to Repair Hyperoxic Lung Injury vol.20, pp.19, 2014, https://doi.org/10.3390/ijms20194815
  108. PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress‐mediated apoptosis vol.234, pp.11, 2014, https://doi.org/10.1002/jcp.28577
  109. Impact of infection on transplantation tolerance vol.292, pp.1, 2014, https://doi.org/10.1111/imr.12803
  110. Silencing of lncRNA SNHG20 delays the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma via regulating liver Kupffer cells polarization vol.71, pp.12, 2014, https://doi.org/10.1002/iub.2137
  111. Toxoplasma ROP16I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages vol.25, pp.45, 2014, https://doi.org/10.3748/wjg.v25.i45.6634
  112. MiR-495 regulates macrophage M1/M2 polarization and insulin resistance in high-fat diet-fed mice via targeting FTO vol.471, pp.11, 2019, https://doi.org/10.1007/s00424-019-02316-w
  113. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pntd.0007819
  114. CEACAM1 Inhibited IκB-α/NF-κB Signal Pathway Via Targeting MMP-9/TIMP-1 Axis in Diabetic Atherosclerosis vol.76, pp.3, 2014, https://doi.org/10.1097/fjc.0000000000000868
  115. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis vol.9, pp.1, 2014, https://doi.org/10.3390/cells9010128
  116. Soluble PTX3 of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuates Hyperoxic Lung Injury by Activating Macrophage Polarization in Neonatal Rat Model vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/1802976
  117. Role of Ginkgolides in the Inflammatory Immune Response of Neurological Diseases: A Review of Current Literatures vol.14, pp.None, 2014, https://doi.org/10.3389/fnsys.2020.00045
  118. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis vol.28, pp.1, 2014, https://doi.org/10.1080/1061186x.2019.1613409
  119. Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 Proteins Are Mediators of Interleukin-10 Modulation of Inflammatory Responses Induced by Chlamydia muridarum and Its Major Outer Membrane Protein vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/7461742
  120. Metabolic Reprogramming of Mouse Bone Marrow Derived Macrophages Following Erythrophagocytosis vol.11, pp.None, 2014, https://doi.org/10.3389/fphys.2020.00396
  121. Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis vol.88, pp.2, 2020, https://doi.org/10.1128/iai.00640-19
  122. Highly Water-Preserving Zwitterionic Betaine-Incorporated Collagen Sponges With Anti-oxidation and Anti-inflammation for Wound Regeneration vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00491
  123. Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways vol.12, pp.3, 2014, https://doi.org/10.3390/cancers12030726
  124. LncRNA Dnmt3aos regulates Dnmt3a expression leading to aberrant DNA methylation in macrophage polarization vol.34, pp.4, 2014, https://doi.org/10.1096/fj.201902379r
  125. Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector vol.27, pp.4, 2014, https://doi.org/10.1016/j.chom.2020.03.003
  126. Immunophenotypic quantification of M1 and M2 macrophage polarization in radicular cysts of primary and permanent teeth vol.53, pp.5, 2014, https://doi.org/10.1111/iej.13257
  127. Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells vol.33, pp.3, 2014, https://doi.org/10.7732/kjpr.2020.33.3.183
  128. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity vol.55, pp.4, 2020, https://doi.org/10.1080/10409238.2020.1784085
  129. Macrophage Polarization Induced by Probiotic Bacteria: a Concise Review vol.12, pp.3, 2014, https://doi.org/10.1007/s12602-019-09612-y
  130. Vitamin D3 as Potential Treatment Adjuncts for COVID-19 vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113512
  131. Long non-coding RNA FENDRR regulates IFNγ-induced M1 phenotype in macrophages vol.10, pp.1, 2014, https://doi.org/10.1038/s41598-020-70633-7
  132. M2 Monocyte Polarization in Dialyzed Patients Is Associated with Increased Levels of M-CSF and Myeloperoxidase-Associated Oxidative Stress: Preliminary Results vol.9, pp.1, 2014, https://doi.org/10.3390/biomedicines9010084
  133. MAPKAP Kinase-2 Drives Expression of Angiogenic Factors by Tumor-Associated Macrophages in a Model of Inflammation-Induced Colon Cancer vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.607891
  134. Fusobacterium nucleatum Facilitates M2 Macrophage Polarization and Colorectal Carcinoma Progression by Activating TLR4/NF-κB/S100A9 Cascade vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.658681
  135. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.734008
  136. Tumor-Derived Extracellular Vesicles: A Means of Co-opting Macrophage Polarization in the Tumor Microenvironment vol.9, pp.None, 2014, https://doi.org/10.3389/fcell.2021.746432
  137. Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis vol.9, pp.None, 2014, https://doi.org/10.3389/fped.2021.710382
  138. 3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue vol.7, pp.8, 2014, https://doi.org/10.1126/sciadv.abe2480
  139. Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance vol.12, pp.2, 2014, https://doi.org/10.3390/genes12020177
  140. Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure vol.84, pp.4, 2014, https://doi.org/10.1080/15287394.2020.1842826
  141. Programmable multilayer printing of a mechanically-tunable 3D hydrogel co-culture system for high-throughput investigation of complex cellular behavior vol.21, pp.4, 2021, https://doi.org/10.1039/d0lc01230k
  142. Therapeutic treatment of dietary docosahexaenoic acid for particle-induced pulmonary inflammation in Balb/c mice vol.70, pp.3, 2014, https://doi.org/10.1007/s00011-021-01443-4
  143. Recombinant Toxoplasma gondii Ribosomal Protein P2 Modulates the Functions of Murine Macrophages In Vitro and Provides Immunity against Acute Toxoplasmosis In Vivo vol.9, pp.4, 2014, https://doi.org/10.3390/vaccines9040357
  144. Reviewing the Significance of Vitamin D Substitution in Monoclonal Gammopathies vol.22, pp.9, 2014, https://doi.org/10.3390/ijms22094922
  145. Adversity in early life and pregnancy are immunologically distinct from total life adversity: macrophage-associated phenotypes in women exposed to interpersonal violence vol.11, pp.1, 2014, https://doi.org/10.1038/s41398-021-01498-1
  146. In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells vol.34, pp.3, 2014, https://doi.org/10.7732/kjpr.2021.34.3.203
  147. Prognostic value of immune-related cells and genes in the tumor microenvironment of ovarian cancer, especially CST4 vol.277, pp.None, 2021, https://doi.org/10.1016/j.lfs.2021.119461
  148. Elizabethkingia anophelis , an emerging pathogen, inhibits RAW 264.7 macrophage function vol.65, pp.8, 2014, https://doi.org/10.1111/1348-0421.12888
  149. The Macrophage Iron Signature in Health and Disease vol.22, pp.16, 2014, https://doi.org/10.3390/ijms22168457
  150. Up-regulation of MiR-145-5p promotes the growth and migration in LPS-treated HUVECs through inducing macrophage polarization to M2 vol.41, pp.5, 2014, https://doi.org/10.1080/10799893.2020.1818095
  151. An immunogenomic phenotype predicting behavioral treatment response: Toward precision psychiatry for mothers and children with trauma exposure vol.99, pp.None, 2014, https://doi.org/10.1016/j.bbi.2021.07.012