DOI QR코드

DOI QR Code

스마트 TV 환경에서 키넥트 센서를 이용한 사진 검색 시스템

Photo Retrieval System using Kinect Sensor in Smart TV Environment

  • 투고 : 2014.02.04
  • 심사 : 2014.03.20
  • 발행 : 2014.03.28

초록

디지털 카메라, 스마트폰, 타블렛과 같은 스마트 기기의 대중화와 소셜 네트워크 서비스를 통해서 사진과 같은 멀티미디어 데이터의 양이 빠르고, 급격하게 확산되고 있다. 사진 검색 방법은 키워드 기반의 검색 방법, 예제 기반의 검색 방법, 시각화 질의 기반의 검색 방법의 세 가지 분류될 수 있다. 이전에 연구된 사진 검색 기법은 일반 PC 환경에 최적화되었기 때문에 최근에 등장한 스마트 TV 환경에서 사진 검색하기 위한 방법으로 사용하는 것은 적합하지 않은 상황이다. 본 논문에서는 스마트 TV 환경에서 키넥트를 이용한 소셜 네트워크에 존재하는 사진 검색 시스템을 제안하였다. 이를 위해서 키넥트 센서를 사용하여 마우스의 컨트롤을 제어할 수 있도록 구현하였으며, 제안하는 시스템의 검색 결과는 임계값이 0.7일 때, 평균 재현율과 평균 정확도는 각각 81%, 80%의 성능을 보였다.

Advances of digital device technology such as digital cameras, smart phones and tablets, provide convenience way for people to take pictures during his/her life. Photo data is being spread rapidly throughout the social network, causing the excessive amount of data available on the internet. Photo retrieval is categorized into three types, which are: keyword-based search, example-based search, visualize query-based search. The commonly used multimedia search methods which are implemented on Smart TV are adapting the previous methods that were optimized for PC environment. That causes some features of the method becoming irrelevant to be implemented on Smart TV. This paper proposes a novel Visual Query-based Photo Retrieval Method in Smart TV Environment using a motion sensing input device known as Kinect Sensor. We detected hand gestures using kinect sensor and used the information to mimic the control function of a mouse. The average precision and recall of the proposed system are 81% and 80%, respectively, with threshold value was set to 0.7.

키워드

참고문헌

  1. Facebook - http://www.facebook.com/
  2. Instagram - http://instagram.com/
  3. flickr - http://www.flickr.com/
  4. M. Crampes, J. Oliveira-Kumar, S. Ranwez, J. Villerd, Visualizing social photos on a Hasse Diagram for eliciting relations and indexing new photos, IEEE Trans. Visualization and Computer Graphics, pp. 985-992, 2009.
  5. K.-S. Lee, J.-G. Jung, K.-J. Oh, G.-S. Jo, U2Mind: visual semantic relationships query for retrieving photos in social network, Proceedings of the Third international conference on Intelligent information and database systems, pp. 20-22, 2011.
  6. Y.-H. Lei, Y-Y. Chen, B-C.Chen L.Iida, W.H. Hsu, Where is who: Large-scale photo retrieval by facial attributes and canvas layout. In ACM SIGIR, pp. 701-710. 2012.
  7. H.-N. Kim, A. E. Saddik, K.-S. Lee, Y.-H. Lee, G.-S. Jo, Photo search in a personal photo diary by drawing face position with people tagging, Proceedings of the 16th international conference on Intelligent user interfaces, pp. 13-16, 2011.
  8. C. Wang, Z. Li, L. Zhang, MindFinder: Image search by interactive sketching and tagging. 19th international conference on World wide web, pp. 1309-1312, 2010.
  9. H. Xu, J. Wang, X. S. Hua, S. Li, Image search by concept map, 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 275-282, 2010.
  10. C. J. Choel, S.-B. Park, Social Photo Retrieval and Its Application in Smart TV, International Conference on Information Science and Applications, pp. 1-2, 2013.
  11. W.-P. Lee, C. Kaoli, J.Y. Huang, A smart TV system with body-gesture control, tag-based rating and context-aware recommendation, Knowledge-Based Systems, vol.56, pp. 167-178, 2014 https://doi.org/10.1016/j.knosys.2013.11.007
  12. kinect sensor - http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
  13. openCV - http://opencv.org/