DOI QR코드

DOI QR Code

Impaired Extinction of Learned Contextual Fear Memory in Early Growth Response 1 Knockout Mice

  • Han, Seungrie (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Hong, Soontaek (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Mo, Jiwon (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Lee, Dongmin (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Choi, Eunju (Department of Psychology, Korea University) ;
  • Choi, June-Seek (Department of Psychology, Korea University) ;
  • Sun, Woong (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Lee, Hyun Woo (Department of Anatomy and Neuroscience, College of Medicine, Korea University) ;
  • Kim, Hyun (Department of Anatomy and Neuroscience, College of Medicine, Korea University)
  • Received : 2013.07.17
  • Accepted : 2013.11.25
  • Published : 2014.01.31

Abstract

Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.

Keywords

References

  1. Albensi, B.C., and Mattson, M.P. (2000). Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35, 151-159. https://doi.org/10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-P
  2. Alberini, C.M. (2009). Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121-145. https://doi.org/10.1152/physrev.00017.2008
  3. Alberini, C.M., Ghirardi, M., Metz, R., and Kandel, E.R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76, 1099-1114. https://doi.org/10.1016/0092-8674(94)90386-7
  4. Burghardt, N.S., Bush, D.E., McEwen, B.S., and LeDoux, J.E. (2007). Acute selective serotonin reuptake inhibitors increase conditioned fear expression: blockade with a 5-HT(2C) receptor antagonist. Biol. Psychiatry 62, 1111-1118. https://doi.org/10.1016/j.biopsych.2006.11.023
  5. Cole, A.J., Saffen, D.W., Baraban, J.M., and Worley, P.F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474-476. https://doi.org/10.1038/340474a0
  6. Davis, S., Vanhoutte, P., Pages, C., Caboche, J., and Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563-4572.
  7. Davis, S., Bozon, B., and Laroche, S. (2003). How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 142, 17-30. https://doi.org/10.1016/S0166-4328(02)00421-7
  8. Fendt, M., Burki, H., Imobersteg, S., Lingenhohl, K., McAllister, K.H., Orain, D., Uzunov, D.P., and Chaperon, F. (2009). Fear-reducing effects of intra-amygdala neuropeptide Y infusion in animal models of conditioned fear: an NPY Y1 receptor independent effect. Psychopharmacology 206, 291-301. https://doi.org/10.1007/s00213-009-1610-8
  9. Garelick, M.G., and Storm, D.R. (2005). The relationship between memory retrieval and memory extinction. Proc. Natl. Acad. Sci. USA 102, 9091-9092. https://doi.org/10.1073/pnas.0504017102
  10. Guzowski, J.F., Setlow, B., Wagner, E.K., and McGaugh, J.L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089-5098.
  11. Hall, J., Thomas, K.L., and Everitt, B.J. (2001). Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci. 21, 2186-2193.
  12. Han, S., Hong, S., Lee, D., Lee, M.H., Choi, J.S., Koh, M.J., Sun, W., Kim, H., and Lee, H.W. (2012). Altered expression of synaptotagmin 13 mRNA in adult mouse brain after contextual fear conditioning. Biochem. Biophys. Res. Commun. 425, 880-885. https://doi.org/10.1016/j.bbrc.2012.07.166
  13. Ji, J., and Maren, S. (2007). Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749-758. https://doi.org/10.1002/hipo.20331
  14. Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289-296. https://doi.org/10.1038/85138
  15. Ko, S.W., Ao, H.S., Mendel, A.G., Qiu, C.S., Wei, F., Milbrandt, J., and Zhuo, M. (2005). Transcription factor Egr-1 is required for long-term fear memory and anxiety. Sheng Li Xue Bao 57, 421-432.
  16. Lee, S.L., Tourtellotte, L.C., Wesselschmidt, R.L., and Milbrandt, J. (1995). Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J. Biol. Chem. 270, 9971-9977. https://doi.org/10.1074/jbc.270.17.9971
  17. Lin, Y., Bloodgood, B.L., Hauser, J.L., Lapan, A.D., Koon, A.C., Kim, T.K., Hu, L.S., Malik, A.N., and Greenberg, M.E. (2008). Activitydependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198-1204. https://doi.org/10.1038/nature07319
  18. Maddox, S.A., Monsey, M.S., and Schafe, G.E. (2011). Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdala. Learn. Mem. 18, 24-38.
  19. Martin, S.J., Grimwood, P.D., and Morris, R.G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649-711. https://doi.org/10.1146/annurev.neuro.23.1.649
  20. Meberg, P.J., Kinney, W.R., Valcourt, E.G., and Routtenberg, A. (1996). Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res. Mol. Brain Res. 38, 179-190. https://doi.org/10.1016/0169-328X(95)00229-L
  21. Morgan, M.A., Romanski, L.M., and LeDoux, J.E. (1993). Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci. Lett. 163, 109-113. https://doi.org/10.1016/0304-3940(93)90241-C
  22. Nguyen, P.V., Abel, T., and Kandel, E.R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104-1107. https://doi.org/10.1126/science.8066450
  23. Ploski, J.E., Monsey, M.S., Nguyen, T., DiLeone, R.J., and Schafe, G.E. (2011). The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS One 6, e23760. https://doi.org/10.1371/journal.pone.0023760
  24. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995). MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878-4884. https://doi.org/10.1093/nar/23.23.4878
  25. Ramamoorthi, K., Fropf, R., Belfort, G.M., Fitzmaurice, H.L., Mc-Kinney, R.M., Neve, R.L., Otto, T., and Lin, Y. (2011). Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 334, 1669-1675. https://doi.org/10.1126/science.1208049
  26. Rosen, J.B., Fanselow, M.S., Young, S.L., Sitcoske, M., and Maren, S. (1998). Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res. 796, 132-142. https://doi.org/10.1016/S0006-8993(98)00294-7
  27. Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annu. Rev. Neurosci. 21, 127-148. https://doi.org/10.1146/annurev.neuro.21.1.127
  28. Szapiro, G., Izquierdo, L.A., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira, P., Medina, J.H., and Izquierdo, I. (2000). Participation of hippocampal metabotropic glutamate receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval. Neuroscience 99, 1-5. https://doi.org/10.1016/S0306-4522(00)00236-0
  29. Szapiro, G., Vianna, M.R., McGaugh, J.L., Medina, J.H., and Izquierdo, I. (2003). The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13, 53-58. https://doi.org/10.1002/hipo.10043
  30. Verma, D., Tasan, R.O., Herzog, H., and Sperk, G. (2012). NPY controls fear conditioning and fear extinction by combined action on Y(1) and Y(2) receptors. Br. J. Pharmacol. 166, 1461-1473. https://doi.org/10.1111/j.1476-5381.2012.01872.x
  31. Wei, F., Xu, Z.C., Qu, Z., Milbrandt, J., and Zhuo, M. (2000). Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J. Cell Biol. 149, 1325-1334. https://doi.org/10.1083/jcb.149.7.1325
  32. Wisden, W., Errington, M.L., Williams, S., Dunnett, S.B., Waters, C., Hitchcock, D., Evan, G., Bliss, T.V., and Hunt, S.P. (1990). Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4, 603-614. https://doi.org/10.1016/0896-6273(90)90118-Y
  33. Wu, X., Kastin, A.J., Hsuchou, H., and Pan, W. (2010). The effects of IL2Rgamma knockout on depression and contextual memory. Behav. Brain Res. 213, 319-322. https://doi.org/10.1016/j.bbr.2010.04.046

Cited by

  1. The Neuronal Activity-Driven Transcriptome vol.51, pp.3, 2015, https://doi.org/10.1007/s12035-014-8772-z
  2. Role for Egr1 in the Transcriptional Program Associated with Neuronal Differentiation of PC12 Cells vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0170076
  3. Refining the nuclear localization signal within the Egr transcriptional coregulator NAB2 vol.593, pp.1, 2019, https://doi.org/10.1002/1873-3468.13288
  4. Acute neuroestrogen blockade attenuates song-induced immediate early gene expression in auditory regions of male and female zebra finches vol.206, pp.1, 2014, https://doi.org/10.1007/s00359-019-01382-w
  5. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations vol.15, pp.5, 2020, https://doi.org/10.1371/journal.pone.0233468