Voice Activity Detection Using Modified Power Spectral Deviation Based on Teager Energy

Teager Energy 기반의 수정된 파워 스펙트럼 편차를 이용한 음성 검출

  • 송지현 (인하대학교 전자공학과) ;
  • 송영록 (인하대학교 전자공학과) ;
  • 심현민 (인하대학교 정보전자공동연구소) ;
  • 이상민 (인하대학교 전자공학과)
  • Received : 2014.02.13
  • Accepted : 2014.02.27
  • Published : 2014.02.28

Abstract

In this paper, we propose a novel voice activity detection (VAD) algorithm using feature vectors based on TE (teager energy). Specifically, power spectral deviation (PSD), which is used as the feature for the VAD in the IS-127 noise suppression algorithm, is obtained after the input signal is transfomed by Teager energy operator. In addition, the TE-based likelihhod ratio are derived in each frame to modifiy the PSD for further VAD. The performance of our proposed VAD algorithm are evaluated by objective testing (total error rate, receiver operating characteristics, perceptual evaluation of speech quality) under various environments, and it is found that the proposed method yields better results than conventional VAD algorithms in the non-stationary noise environments under 5 dB SNR (total error rate = 2.6% decrease, PESQ score = 0.053 improvement).

본 논문에서는 잡음 상황에서 강인한 음성 특성을 나타내는 TE (teager energy) 기반의 특징벡터를 이용한 음성 검출 알고리즘을 제안하였다. 입력 신호에 TEO (teager energy operator)를 적용하고, 이를 이용하여 음성 검출 알고리즘에서 우수한 성능을 보여주는 파워 스펙트럼 편차를 구하였다. 또한, 제안된 음성 검출 알고리즘의 성능 향상을 위하여 통계적 모델 기반의 우도비를 TE 기반의 파워 스펙트럼 편차의 가중치 요소로 적용하였다. 제안된 알고리즘의 성능 검증을 위해서 전체 오차율, ROC (receiver operating characteristics), PESQ (perceptual evaluation of speech quality)와 같은 객관적 실험을 수행하였다. 실험결과 5dB SNR 이하의 낮은 SNR을 갖는 비 정상 잡음 환경에서 제안한 음성 검출 알고리즘이 약 2.6%의 전체 오차율 감소와 약 0.053의 PESQ 점수 향상을 나타내었다.

Keywords