References
-
P. Y. Chen and D. C. Wang, Complete moment convergence for sequence of identically distributed
$\varphi$ -mixing random variables, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 4, 679-690. https://doi.org/10.1007/s10114-010-7625-6 - Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd Edition, New York, Springer-Verlag, 1997.
- R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. I, Theory Probab. Appl. 1 (1956), no. 1, 65-80. https://doi.org/10.1137/1101006
- R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. II, Theory Probab. Appl. 1 (1956), no. 4, 329-383. https://doi.org/10.1137/1101029
- J. L. Doob, Stochastic Processes, New York, John Wiley and Sons, 1953.
- S. Hu and X. Wang, Large deviations for some dependent sequences, Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), no. 2, 295-300.
- I. A. Ibragimov, Some limit theorems for stochastic processes stationary in the strict sense, Dokl. Akad. Nayk SSSR. 125 (1959), 711-714 (in Russian).
- I. A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), no. 4, 349-382. https://doi.org/10.1137/1107036
- K. Knopp, Theory and Application of Infinite Series, London, Blackie & Son, 1951.
-
A. Kuczmaszewska, On the strong law of large numbers for
$\varphi$ -mixing and$\rho$ -mixing random variables, Acta Math. Hungar. 132 (2011), no. 1-2, 174-189. https://doi.org/10.1007/s10474-011-0089-z - Z. Y. Lin and Z. D. Bai, Probability Inequalities, Beijing, Science Press, 2010.
- M. Ordonez Cabrera, A. Rosalsky, and A. Volodin, Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables, TEST 21 (2012), no. 2, 369-385. https://doi.org/10.1007/s11749-011-0248-0
-
M. Peligrad, An invariance principle for
$\varphi$ -mixing sequences, Ann. Probab. 13 (1985), no. 4, 1304-1313. https://doi.org/10.1214/aop/1176992814 - B. L. S. Prakasa Rao, Conditional independence, conditional mixing and conditional association, Ann. Inst. Statist. Math. 61 (2009), no. 2, 441-460. https://doi.org/10.1007/s10463-007-0152-2
- G. G. Roussas and A. Ioannides, Moment inequalities for mixing sequences of random variables, Stoch. Anal. Appl. 5 (1987), no. 1, 61-120.
-
P. K. Sen, A note on weak convergence of empirical processes for sequences of
$\varphi$ -mixing random variables, Ann. Math. Statist. 42 (1971), no. 6, 2131-2133. https://doi.org/10.1214/aoms/1177693079 - Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Proc. Appl. 48 (1993), no. 2, 319-334. https://doi.org/10.1016/0304-4149(93)90051-5
-
Z. S. Szewczak, A note on Marcinkiewicz laws for strictly stationary
$\varphi$ -mixing sequences, Statist. Probab. Lett. 81 (2011), no. 11, 1738-1741. https://doi.org/10.1016/j.spl.2011.06.001 -
S. A. Utev, The central limit theorem for
$\varphi$ -mixing arrays of random variables, Theory Probab. Appl. 35 (1990), no. 1, 131-139. - D. M. Yuan, J. An, and X. S.Wu, Conditional limit theorems for conditionally negatively associated random variables, Monatsh. Math. 161 (2010), no. 4, 449-473. https://doi.org/10.1007/s00605-010-0196-x
- D. M. Yuan and L. Lei, Some conditional results for conditionally strong mixing se-quences of random variables, Sci. China Math. 56 (2013), no. 4, 845-859. https://doi.org/10.1007/s11425-012-4554-0
- D. M. Yuan, L. R. Wei, and L. Lei, Conditional central limit theorems for a sequence of conditionally independent random variables, J. Korean Math. Soc. 51 (2014), no. 1, 1-15.
- D. M. Yuan and Y. Xie, Conditional limit theorems for conditionally linearly negative quadrant dependent random variables, Monatsh. Math. 166 (2012), no. 2, 281-299. https://doi.org/10.1007/s00605-012-0373-1
- D. M. Yuan and Y. K. Yang, Conditional versions of limit theorems for conditionally associated random variables, J. Math. Anal. Appl. 376 (2011), no. 1, 282-293. https://doi.org/10.1016/j.jmaa.2010.10.046
- D. M. Yuan and J. H. Zheng, Conditionally negative association resulting from multi-nomial distribution, Statist. Probab. Lett. 83 (2013), no. 10, 2222-2227. https://doi.org/10.1016/j.spl.2013.06.004
Cited by
- EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES TO CONDITIONAL CASES vol.52, pp.2, 2015, https://doi.org/10.4134/JKMS.2015.52.2.431