DOI QR코드

DOI QR Code

Design of PCA Architecture Based on Quantum-Dot Cellular Automata

QCA 기반의 효율적인 PCA 구조 설계

  • Shin, Sang-Ho (School of Computer Science and Engineering, Kyungpook National University) ;
  • Lee, Gil-Je (School of Computer Science and Engineering, Kyungpook National University) ;
  • Yoo, Kee-Young (School of Computer Science and Engineering, Kyungpook National University)
  • Received : 2014.04.08
  • Accepted : 2014.04.19
  • Published : 2014.04.30

Abstract

CMOS technology based on PCA is very efficient at an implementation of memory or ALU. However, there has been a growing interest in quantum-dot cellular automata (QCA) because of the limitation of CMOS scaling. In this paper, we propose a design of PCA architecture based on QCA. In the proposed PCA design, we utilize D flip-flop and XOR logic gate without wire crossing technique, and design a input and rule control switches. In experiment, we perform the simulation of the proposed PCA architecture by QCADesigner. As the result, we confirm the efficiency the proposed architecture.

PCA에 기반을 둔 CMOS 소자 기술은 메모리 혹은 ALU 회로의 구현에 매우 효율적이다. 그러나 CMOS 소자 스케일링 기술의 한계로 인하여 이를 해결할 수 있는 새로운 기술의 필요성이 대두되었고, 양자점 셀룰러 오토마타(QCA; quantum-dot cellular automata)는 이를 해결할 수 있는 기술로 등장했다. 본 논문에서는 QCA에 기반을 둔 효율적인 PCA 구조를 설계한다. 설계하는 PCA 구조에서의 D 플립플롭과 XOR 논리게이트는 기존에 제안되었던 회로를 사용하고, 입력 제어 스위치와 규칙 제어 스위치는 QCA에 기반을 두고 새롭게 설계한다. 설계된 PCA 구조는 QCA디자이너를 이용하여 시뮬레이션을 수행하고, 그 결과를 기존의 것과 비교 및 분석하여 설계된 구조의 효율성을 확인한다.

Keywords

References

  1. C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, "Quantum cellular automata," Nanotechnology, Vol. 4, No. 1, pp. 49-57, Jan. 1993. https://doi.org/10.1088/0957-4484/4/1/004
  2. J. R. Janulis, P. D. Tougaw, S. C. Henderson and E. W. Johnson, "Serial bit-stream analysis using quantum-dot cellular automata," IEEE Transactions on Nanotechnology, Vol. 3, No. 1, pp. 158-164, Mar. 2004. https://doi.org/10.1109/TNANO.2004.824014
  3. H. Cho and E. E. Swartzlander, "Adder designs and analyses for quantum-dot cellular automata," IEEE Transactions on Nanotechnology, Vol. 6, No. 3, pp. 374-383, May 2007. https://doi.org/10.1109/TNANO.2007.894839
  4. V. Vankamamidi, M. Ottavi and F. Lombardi, "A serial memory by quantum-dot cellular automata (QCA)," IEEE Transactions on Computers, Vol. 57, No. 5, pp. 606-618, May 2008. https://doi.org/10.1109/TC.2007.70831
  5. A. S. Shamsabadi, B. S. Ghahfarokhi, K. Zamanifar and N. Movahedinia, "Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study," Journal of Systems Architecture, Vol. 55, No. 3, pp. 180-187, Mar. 2009. https://doi.org/10.1016/j.sysarc.2008.11.001
  6. P. D. Tougaw and M. Khatun, "A scalable signal distribution network for quantum-dot cellular automata," IEEE Transactions on Nanotechnology, Vol. 12, No. 2, pp. 215-224, Mar. 2013. https://doi.org/10.1109/TNANO.2013.2243162
  7. D. Y. Park, "Realization of multiple-control Toffoli gate based on mutiple-valued quantum Logic," The Journal of Korea Navigation Institute, Vol. 16, No. 1, pp. 62-69, Feb. 2012. https://doi.org/10.12673/jkoni.2012.16.1.062
  8. P. P. Chaudhuri, Additive cellular automata: theory and applications (Vol. 1), Los Alamitos, CA: IEEE Computer Society Press, pp. 52-55, 1997.
  9. A. Khurasia and P Gambhir, Quantum cellular automata, Department of Computer Science and Engineering, Indian Institute of Technology Delhi (IIT Delhi), Delhi, India, Final Project Report, 2006.
  10. K. Walus, J. D. Timothy, A. J. Graham and B. R. Arief, "QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata," IEEE Transactions on Nanotechnology, Vol. 3, No. 1, pp. 26-31, Mar. 2004 https://doi.org/10.1109/TNANO.2003.820815
  11. M. R. Beigh, M. Mustafa and F. Ahmad, "Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)", Circuits and Systems, Vol. 4, No. 2, pp. 147-156, Apr. 2013. https://doi.org/10.4236/cs.2013.42020
  12. Microsystems and the University of British Columbia Nanotechnology Group. QCADesigner, (2007), [Internet]. Available: http://www.mina.ubc.ca/qcadesigner/
  13. K. Walus, T. J. Dysart, G. A. Jullien and R. A. Budiman, "QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata", IEEE Transactions on Nanotechnology, Vol. 3, Issue 1, pp. 26-31, Mar. 2004. https://doi.org/10.1109/TNANO.2003.820815