DOI QR코드

DOI QR Code

Time harmonic analysis of dam-foundation systems by perfectly matched layers

  • Khazaee, Adib (Department of Civil and Environmental Engineering, Amirkabir University of Technology) ;
  • Lotfi, Vahid (Department of Civil and Environmental Engineering, Amirkabir University of Technology)
  • Received : 2013.07.24
  • Accepted : 2014.03.05
  • Published : 2014.05.10

Abstract

Perfectly matched layers are employed in time harmonic analysis of dam-foundation systems. The Lysmer boundary condition at the truncation boundary of the PML region has been incorporated in the formulation of the dam-foundation FE model (including PML). The PML medium is defined in a way that the formulation of the system can be transformed into time domain. Numerical experiments show that applying Lysmer boundary conditions at the truncation boundary of the PML area reduces the computational cost and make the PML approach a more efficient technique for the analysis of dam-foundation systems.

Keywords

References

  1. Appelo, D. and Kreiss, G. (2006), "A new absorbing layer for elastic waves", J. Comput. Phys., 215, 642- 660. https://doi.org/10.1016/j.jcp.2005.11.006
  2. Basu, U. (2004), "Explicit finite element perfectly matched layer for transient three-dimensional elastic waves", Int. J. Numer. Method. Eng., 77, 151-176.
  3. Basu, U. (2004), "Perfectly matched layers for acoustic and elastic waves: theory, finite element implementation and application to earthquake analysis of dam-water-foundation rock systems", Ph.D. Dissertation, Civil and Environmental Engineering Faculty, University of California Berkeley, Berkeley.
  4. Basu, U. and Chopra, A.K. (2003), "Perfectly matched layers for time-harmonic elastodynamics of unbounded domains theory and finite-element implementation", Comput. Method. Appl. Mech. Eng., 192, 1337-1375. https://doi.org/10.1016/S0045-7825(02)00642-4
  5. Basu, U. and Chopra, A.K. (2004), "Perfectly matched layers for transient elastodynamics of unbounded domains", Int. J. Numer. Method. Eng., 59, 1039-1074. https://doi.org/10.1002/nme.896
  6. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Inc., New Jersey, NY, USA.
  7. Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
  8. Chew, W.C., Jin, J.M. and Michielssen, E. (1997), "Complex coordinate stretching as a generalized absorbing boundary condition", Microw. Opt. Tech. Let., 15(6), 363-369. https://doi.org/10.1002/(SICI)1098-2760(19970820)15:6<363::AID-MOP8>3.0.CO;2-C
  9. Chew, W.C. and Liu, Q.H. (1996), "Perfectly Matched Layers for Elastodynamics: A new absorbing boundary condition", J. Comput. Acoust., 4(4), 341-359. https://doi.org/10.1142/S0218396X96000118
  10. Collino, F. and Tsogka, C. (2001), "Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media", Geophysics, 66(1), 294-307. https://doi.org/10.1190/1.1444908
  11. Feltrin, G. (1997), "Rational absorbing boundaries for the time-domain analysis of dam-reservoir-foundation systems", PhD Dissertation, Institute of Structural Engineering, Swiss Federal Institute of Technology, Zurich.
  12. Givoli, D. (1999), "Recent advances in the DtN FE method", Arch. Comput. Method. Eng., 6(2), 73-116.
  13. Givoli, D. (2004), "High-order local non-reflecting boundary conditions: a review", Wave. Mot., 39, 319- 326. https://doi.org/10.1016/j.wavemoti.2003.12.004
  14. Harrari, I. and Albocher, U. (2006), "Studies of FE-PML for exterior problems of time-harmonic elastic waves", Comput. Method. Appl. Mech. Eng., 195, 3854-3879. https://doi.org/10.1016/j.cma.2005.01.024
  15. Harrari, I. and Slavutin, M. (2000), "Analytical and numerical studies of a finite element PML for the Helmholtz equation", J. Comput. Acoust., 8(1), 121-137. https://doi.org/10.1142/S0218396X0000008X
  16. Hastings, F.D., Schneider, J.B. and Broscha, S.L. (1996), "Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation", J. Acoust. Soc. Am., 100(5), 3061-3069. https://doi.org/10.1121/1.417118
  17. Katsibas Theodoros, K. and Antonopoulos Christos, S. (2004), "A general form of perfectly matched layers for three-dimensional problems of acoustic scattering in lossless and lossy fluid media", IEEE Tran. Ultra. Ferr. Freq. Control, 51(8), 964-972. https://doi.org/10.1109/TUFFC.2004.1324400
  18. Khazaee, A. and Lotfi, V. (2014), "Application of perfectly matched layers in the time harmonic analysis of dam-reservoir systems", Earthq. Struct. (Unpublished results)
  19. Khazaee, A. and Lotfi, V. (2014), "Application of perfectly matched layers in the transient analysis of damreservoir systems", Soil Dyn. Earthq. Eng., 60, 51-68. https://doi.org/10.1016/j.soildyn.2014.01.005
  20. Kim, D.K. and Yun, C.B. (2000), "Time-domain soil-structure interaction analysis in two-dimensional medium based on analytical frequency-dependent infinite elements", Int. J. Numer. Method. Eng., 47, 1241-1261. https://doi.org/10.1002/(SICI)1097-0207(20000310)47:7<1241::AID-NME807>3.0.CO;2-9
  21. Kim, S. and Pasciak, J.E. (2012), "Analysis of Cartesian PML approximation to acoustic scattering problems in $R^{2}$ ", Wave Mot, 49, 238-257. https://doi.org/10.1016/j.wavemoti.2011.10.001
  22. Lancioni, G. (2011), "Numerical comparison of high-order absorbing boundary conditions and perfectly matched layers for a dispersive one-dimensional medium", Comput Method. Appl. Mech. Eng., 209, 209- 212.
  23. Liu, Q.H. (1999), "Perfectly matched layers for elastic waves in cylindrical and spherical coordinates", J. Acoust. Soc. Am., 105(4), 99-105.
  24. Liu, J., Ma, J. and Yang, H. (2009), "The study of perfectly matched layer absorbing boundaries for SH wave fields", App. Geophysics, 6(3), 267-274. https://doi.org/10.1007/s11770-009-0023-0
  25. Lotfi, V., Rosset, J. and Tassoulas, J.L. (1987), "A technique for the analysis of the response of dams to earthquakes", Earthq. Eng. Struct. Dyn., 15, 463-490. https://doi.org/10.1002/eqe.4290150405
  26. Lysmer, J. and Kohlemeyer, R.L. (1969). "Finite dynamic model for infinite media", J. Eng. Mech., ASCE, 95(EM4), 859-877.
  27. Ma, S. and Liu, P. (2006), "Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element method", B. Seismol. Soc. Am., 96(5), 1779-1794. https://doi.org/10.1785/0120050219
  28. Park, S.H. and Antin, N. (2004), "A discontinuous Galerkin method for seismic soil-structure interaction analysis in the time domain", Earthq. Eng. Struct. Dyn., 33, 285-293. https://doi.org/10.1002/eqe.353
  29. Park, S.H. and Tassoulas, J.L. (2002), "A discontinuous Galerkin method for transient analysis of wave propagation in unbounded domains", Comput. Method. Appl. Mech. Eng., 191, 3983-4011. https://doi.org/10.1016/S0045-7825(02)00352-3
  30. Petropoulos, P.G. (1998), "On the termination of the perfectly matched layer with local absorbing boundary conditions", J. Comput. Phys., 143, 665-673. https://doi.org/10.1006/jcph.1998.5979
  31. Qin, Z., Lu, M., Aheng, X., Yao, Y., Zhang, C. and Song, J. (2009), "The implementation of an improved NPML absorbing boundary condition in elastic wave modeling", Appl. Geophys, 6(2), 113-121. https://doi.org/10.1007/s11770-009-0012-3
  32. Song, C. and Wolf, J.P. (2000), "The scaled boundary finite-element method, a primer: Derivations", Comput. Struct., 78, 129-210.
  33. Song, C. and Wolf, J.P. (2000), "The scaled boundary finite-element method, a primer: solution procedures", Comput. Struct., 78, 211-225. https://doi.org/10.1016/S0045-7949(00)00100-0
  34. Wilson, E.L. (2002), Three-dimensional static and dynamic analysis of structures, Computers and structures, Inc., Berkeley, California, USA.
  35. Yazdchi, M., Valliapan, S. and Khalili, N. (1999), "Non-linear seismic behavior of concrete gravity dams using coupled finite element-boundary element technique", Int. J. Numer. Method. Eng., 44, 101-130. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1<101::AID-NME495>3.0.CO;2-4
  36. Yun, C.B., Kim, D.K. and Kim, J.M. (2000), "Analytical frequency-dependent infinite elements for soilstructure interaction analysis in two-dimensional medium", Eng. Struct., 22, 258-271. https://doi.org/10.1016/S0141-0296(98)00070-4
  37. Zheng, Y.Q., He, J.Q. and Liu, Q.H. (2001), "The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media", Geophysics, 66(4), 1258-1266. https://doi.org/10.1190/1.1487073
  38. Zheng, Y. and Huang, X. (2002), "Anisotropic perfectly matched layers for elastic waves in Cartesian and curvilinear coordinates", Earth Resources Laboratory 2002 Industry Consortium Meeting, Dept. of Earth, Atmospheric, and Planetary sciences, Massachusetts Institute of Technology, Cambridge, MA, USA,.

Cited by

  1. Transient analysis of concrete gravity dam-reservoir systems by Wavenumber-TD approach vol.90, 2016, https://doi.org/10.1016/j.soildyn.2016.08.026
  2. A comprehensive evaluation method study for dam safety vol.63, pp.5, 2017, https://doi.org/10.12989/sem.2017.63.5.639
  3. An analytical approach of behavior change for concrete dam by panel data model vol.36, pp.5, 2014, https://doi.org/10.12989/scs.2020.36.5.521
  4. Transient analysis of concrete gravity dams by Wavenumber-TD method for general excitation vol.174, pp.4, 2014, https://doi.org/10.1680/jstbu.19.00041
  5. Application of Hagstrom-Warburton high-order truncation boundary condition on time harmonic analysis of concrete arch dam-reservoir systems vol.38, pp.7, 2014, https://doi.org/10.1108/ec-08-2020-0441