Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Adomian, G. (1994), Solving Frontier Problems of Physics: the Decomposition Method, Kluwer Academic Publishers, Dordrecht.
- Arafat, H.N. and Nayfeh, A.H. (2003), "Non-linear responses of suspended cables to primary resonance excitations", J. Sound Vib., 266, 325-334. https://doi.org/10.1016/S0022-460X(02)01393-7
- Bender, C.M., Milton, K.A., Pinsky, S.S. and Simmons, L.M. (1989), "A new perturbative approach to nonlinear problems", J. Math. Phys., 30, 1447-1455. https://doi.org/10.1063/1.528326
- Benedettini, F. and Rega, G. (1989), "Planar non-linear oscillations of elastic cables under superharmonic resonance conditions", J. Sound Vib., 132, 353-366. https://doi.org/10.1016/0022-460X(89)90630-5
- Chen, Y.M. and Liu, J.K. (2009), "A study of homotopy analysis method for limit cycle of van der Pol equation", Commun. Nonlin. Sci. Numer. Simul., 14, 1816-1821. https://doi.org/10.1016/j.cnsns.2008.07.010
- Feng, S.D. and Chen, L.Q. (2009), "Homotopy analysis approach to Duffing-harmonic oscillators", Appl. Math and Mech., (English Edition), 30, 1083-1089. https://doi.org/10.1007/s10483-009-0902-7
- Hagedorn, P. and Schafer, B. (1980), "On non-linear free vibrations of an elastic cable", Int. J. Nonlin. Mech., 15, 333-340. https://doi.org/10.1016/0020-7462(80)90018-9
- Hoseini, S.H., Pirbodaghi, T., Asghari, M., Farrahi, G.H. and Ahmadian, M.T. (2008), "Nonlinear free vibration of conservative oscillators with inertia and static type cubic nonlinearities using homotopy analysis method", J Sound Vib., 316, 263-273. https://doi.org/10.1016/j.jsv.2008.02.043
- Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, MA.
- Irvine, H.M. and Caughey, T.K. (1974), "The linear theory of free vibrations of a suspended cable", Proc. Royal. Soc. London A., 341, 299-315. https://doi.org/10.1098/rspa.1974.0189
- Liao, S.J. (1992), "The proposed homotopy analysis techniques for the solution of nonlinear problems", Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai.
- Liao, S.J. (1995), "An approximate solution technique not depending on small parameters: a special example", Int. J. Nonlin., 30, 371-380. https://doi.org/10.1016/0020-7462(94)00054-E
- Liao, S.J. (2003), Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall, CRC Press, Boca Raton.
- Liao, S.J. and Tan, Y. (2007), "A general approach to obtain series solutions of nonlinear differential equations", Stud. Appl. Math., 119, 297-354. https://doi.org/10.1111/j.1467-9590.2007.00387.x
- Luongo, A., Rega, G. and Vestroni, F. (1984), "Planar non-linear free vibrations of an elastic cable", Int. J. Nonlin. Mech., 19, 39-52. https://doi.org/10.1016/0020-7462(84)90017-9
- Lyapunov, A.M. (1992), General Problem on Stability of Motion, Taylor/Francis, London.
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, Wiley, New York.
- Nayfeh, A.H., Nayfeh, J.F. and Mook, D.T. (1992), "On method for continuous systems with quadratic and cubic nonlinearities", Nonlin. Dyn., 3, 145-162. https://doi.org/10.1007/BF00118990
- Pirbodaghi, T., Ahmadian, M.T., and Fesanghary, M. (2009), "On the homotopy analysis method for nonlinear vibration of beams", Mech. Res. Commun., 36, 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
- Qian, Y.H., Ren, D.X., Lai, S.K. and Chen, S.M. (2012), "Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam", Commun. Nonlin. Sci. Numer. Simul., 17, 1947-1955. https://doi.org/10.1016/j.cnsns.2011.09.018
- Rega, G. (2004a), "Nonlinear vibrations of suspended cables, Part II: deterministic phenomenoa", Appl. Mech. Rev., 57, 479-514. https://doi.org/10.1115/1.1777225
- Rega, G. (2004b), "Nonlinear vibrations of suspended cables, Part I: modeling and analysis", Appl. Mech. Rev., 57, 443-478. https://doi.org/10.1115/1.1777224
- Rega, G., Vestroni, F. and Benedettini. F. (1984), "Parametric analysis of large amplitude free vibrations of a suspended cable", Int. J. Solid. Struct., 20, 95-105. https://doi.org/10.1016/0020-7683(84)90001-5
- Wang, L.H. and Zhao, Y.Y. (2007), "Non-linear planar dynamics of suspended cables investigated by the continuation technique", Eng. Struct., 29, 1135-1144. https://doi.org/10.1016/j.engstruct.2006.07.021
- Wang, L.H. and Zhao, Y.Y. (2009), "Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitation", J Sound Vib., 319, 1-14. https://doi.org/10.1016/j.jsv.2008.08.020
- Wen, J.M. and Cao, Z.C. (2007), "Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis methods", Phys. Lett. A., 371, 427-431. https://doi.org/10.1016/j.physleta.2007.09.057
- Zhao, Y.Y. and Wang, L.H. (2006), "On the symmetric modal interaction of the suspended cable: three-toone internal resonance", J Sound Vib., 294, 1073-1093. https://doi.org/10.1016/j.jsv.2006.01.004
- Zhao, Y.Y., Wang, L.H., Liu, W.C. and Zhou, H.B. (2005), "Direct treatment and discretization of nonlinear dynamics of suspended cable", Acta. Mech. Sin., 37, 329-338. (in Chinese)
Cited by
- The effect of sweep angle on the limit cycle oscillations of aircraft wings vol.2, pp.2, 2015, https://doi.org/10.12989/aas.2015.2.2.199
- Supersonic nonlinear flutter of cross-ply laminated shallow shells pp.2041-3025, 2019, https://doi.org/10.1177/0954410019827461
- A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103