DOI QR코드

DOI QR Code

Effect of Annealing Atmosphere on the La2O3 Nanocrystallite Based Charge Trap Memory

  • Tang, Zhenjie (College of Physics and Electronic Engineering, Anyang Normal University) ;
  • Zhao, Dongqiu (College of Physics and Electronic Engineering, Anyang Normal University) ;
  • Hu, Huiping (College of Physics and Electronic Engineering, Anyang Normal University) ;
  • Li, Rong (School of Mathematics and Statistics, Anyang Normal University) ;
  • Yin, Jiang (Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University)
  • 투고 : 2014.02.07
  • 심사 : 2014.03.04
  • 발행 : 2014.04.25

초록

$Pt/Al_2O_3/La_2Si_5O_x/SiO_2/Si$ charge trap memory capacitors were prepared, in which the $La_2Si_5O_x$ film was used as the charge trapping layer, and the effects of post annealing atmospheres ($NH_3$ and $N_2$) on their memory characteristics were investigated. $La_2O_3$ nanocrystallites, as the storage nodes, precipitated from the amorphous $La_2Si_5O_x$ film during rapid thermal annealing. The $NH_3$ annealed memory capacitor showed higher charge storage performances than either the capacitor without annealing or the capacitor annealed in $N_2$. The memory characteristics were enhanced because more nitrogen was incorporated at the $La_2Si_5O_x/SiO_2$ interface and interfacial reaction was suppressed after the $NH_3$ annealing treatment.

키워드

참고문헌

  1. X. D. Huang, Johnny K. O. Sin, and P. T. Lai, IEEE Electron Device Lett. 34, 499 (2013) [DOI: http://dx.doi.org/10.1109/LED.2013.2244557].
  2. C. H. Zhu, Z. L. Huo, Z. G. Xu, M. H. Zhang, Q. Wang, J. Liu, S. B. Long, and M. Liu, Appl. Phys. Lett. 97, 253503 (2010) [DOI: http://dx.doi.org/10.1063/1.3531559].
  3. M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voitchovsky, F. Stellacci, A. Hirsch, and M. Halik, Adv. Mater. 22, 2525 (2010) [DOI: http://dx.doi.org/10.1002/adma.201000030].
  4. R. J. Tseng, J. X. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005)[DOI: http://dx.doi.org/10.1021/nl050587l].
  5. S. H. Lee, Y. Jung, and R. Agarwal, Nat. Nanotechnol. 2, 626 (2007) [DOI: http://dx.doi.org/10.1038/nnano.2007.291].
  6. H. I. Hanafi, S. T. Tiwari, and I. Khan, IEEE Trans. Electron Devices., 43,1553 (1996) [DOI: http://dx.doi.org/10.1109/16.535349 ].
  7. Y. L. Han, Z. L. Huo, X. K. Li , G. X. Chen, X. N. Yang , D. Zhang, Y. Wang, T. H. Ye, M. Liu, Electron Device Letters, 34, 870 (2013) [DOI: http://dx.doi.org/10.1109/LED.2013.2260853 ].
  8. C. C. Lin, Y. H. Wu, Y. S. Lin, M. L. Wu and L. L. Chen, Nanotechnology, 12,436 (2013) [DOI: http://dx.doi.org/10.1109/TNANO.2013.2253796 ].
  9. K. H. Lee, H. C. Lin and T. Y. Huang, Electron Device Letters, 34, 393 (2013) [DOI: http://dx.doi.org/10.1109/LED.2013.2237748 ].
  10. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002) [DOI: http://dx.doi.org/10.1109/TNANO.2002.1005428].
  11. Z. T. Liu, C. Lee, V. Narayanan, G. Pei, E. C. Kan, IEEE Trans. Electron Devices, 49, 1606 (2002) [DOI: http://dx.doi.org/10.1109/TED.2002.802618 ].
  12. E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsios, J. Stoemenos, S. Zhang, and J. van den Berg, Appl. Phys. Lett. 77, 3450 (2000) [DOI: http://dx.doi.org/10.1063/1.1328101].
  13. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys.Lett. 68, 1377 (1996) [DOI: http://dx.doi.org/10.1063/1.116085].
  14. J. Sarkar, S. Dey, D. Shahrjerdi, S. K. Banerjee, IEEE Electron Device Lett. 28, 449 (2007) [DOI: http://dx.doi.org/10.1109/LED.2007.895445].
  15. C. Lee, J. H. Kwon, J. S. Lee, Y. M. Kim, Y. Choi, H. Shin, J. Lee, and B. H. Sohn, Appl. Phys. Lett., 91, 153506 (2007) [DOI: http://dx.doi.org/10.1063/1.2798502].
  16. J. Mooney, M. M. Krause, J. I. Saari and P. Kambhampati, J. Chem. Phys. 138, 204705 (2013) [DOI: http://dx.doi.org/10.1063/1.4807054].
  17. P. Dimitrakis, P. Normand, C. Bonafos, E. Papadomanolaki, and E. Iliopoulos, Appl. Phys. Lett. 102, 053117 (2013) [ DOI: http://dx.doi.org/10.1063/1.4790439].
  18. X. D. Huang, P. T. Lai, and Johnny K. O. Sin, ECS Solid State Letters, 1,Q45 (2012) [DOI: http://dx.doi.org/10.1149/2.005206ss].
  19. S. K. Sahoo and D. Misra, Appl. Phys. Lett. 100, 232903 (2012) [DOI: http://dx.doi.org/10.1063/1.4726186].
  20. L. Shi, Y. Yuan, X. F. Liang, Y. D. Xia, J. Yin, Z. G. Liu, Applied Surface Science., 253,3731 (2007) [DOI: http://dx.doi.org/10.1016/j.apsusc.2006.08.006].
  21. S. Y. No, D. Eom, C. S. Hwang, and H. J. Kim, J. Appl. Phys., 100, 024111 (2006) [DOI: http://dx.doi.org/10.1063/1.2218465].
  22. M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, Appl. Phys. Lett. 80, 3183 (2002) [DOI: http://dx.doi.org/10.1063/1.1476397].
  23. L. Wang, K. Xue, J. B. Xu, A. P. Huang, and P. K. Chu, Appl. Phys. Lett., 90, 122901 (2007) [DOI: http://dx.doi.org/10.1063/1.2715044].
  24. Z. J. Tang, R. Li, F. J. Yu, Vacuum. 99, 17 (2014) [DOI: http://dx.doi.org/10.1016/j.vacuum.2013.05.010].
  25. Z. J. Tang, D. Q. Zhao, R. Li, X. H. Zhu, Trans. Electr. Electron. Mater. 15,16 (2014) [DOI: http://dx.doi.org/10.4313/TEEM.2014.15.1.16].