DOI QR코드

DOI QR Code

Assessment of Counting Efficiency of a Whole Body Counter by Human Body Size and Standing Position Using Monte Carlo Method

몬테카를로 방법론을 이용한 측정 대상의 인체 크기와 측정 위치에 따른 전신계수기 계수효율 평가

  • Received : 2013.12.02
  • Accepted : 2014.01.29
  • Published : 2014.03.31

Abstract

For the case of radiation emergency, it is required to assess internal contamination of the public, including children as well as adults. The objective of the present study was to assess counting efficiency of a whole body counter by human body size and standing position of the measurement person. In this study, the FASTSCAN whole body counter used at National Radiation Emergency Medical Center of Korean Institute of Radiological and Medical Science was simulated by a radiation transport computer code. The simulation results of the counting efficiencies agreed well with measurements within the 2% of discrepancy for 4-year child and 5% for adults. The standing positions of the people were adjusted by body size to find the consistent trend of the counting efficiencies by human body size. Body size scaling factors of the whole body counter were derived to consider human body size and improve the measurement accuracy. The counting efficiency assessment methodology in this study can be successively used to improve the measurement accuracy when using a whole body counter for the case of radiation emergency.

방사선사고 시 내부오염 평가대상의 범위는 성인뿐만 아니라 소아까지 전 연령층으로 확대된다. 본 연구에서는 전신계수기의 측정 정확도를 향상시키기 위해 측정대상의 인체 크기와 측정 위치에 따른 계수효율을 평가하였다. 본 연구에서는 한국원자력의학원에서 사용하는 전신계수기인 FASTSCAN에 대해 방사선수송코드를 이용하여 전산 모사하였다. 측정한 계수효율과 계산한 계수효율의 상대편중은 4세 소아의 경우 2% 이하이였으며, 성인의 경우에도 5% 이하로 일치하였다. 측정 대상의 키가 작을수록 검출기와의 거리가 멀어지는 문제를 보완하고 인체 크기에 따른 계수효율의 일관적인 경향성을 도출하기 위해, 측정대상의 측정 위치를 조절하여 전신계수기의 계수효율을 평가하였다. 조절된 측정 위치에서의 전신계수기 계수효율을 바탕으로 측정 대상의 인체 크기 차이에 의한 내부오염도 평가 시 측정 오차를 줄일 수 있는 인체 크기 보정인자를 도출하였다. 도출된 보정인자는 전신계수기 측정결과에 곱하여 측정대상의 내부오염도를 쉽게 평가할 수 있으며, 궁극적으로 방사선사고 시 전신계수기를 이용한 내부오염도의 측정 정확도를 크게 향상시킬 수 있을 것이다.

Keywords

References

  1. Li C, Wilkins R, Dai X, Sadi B, Ko R, Kramer GH. Canada's efforts in developing capabilities in radiological population monitoring. Health Phys. 2011;101(2):112-117. https://doi.org/10.1097/HP.0b013e318213a719
  2. International Atomic Energy Agency. Rapid monitoring of large groups of internally contaminated people following a radiation accident. IAEA TECDOC-746. Vienna, Austria. 1994.
  3. Genicot JL, Koukouliou V, Carinou E. Monte Carlo calculations applied to the parametrical studies in a whole body counter. Radiat. Prot. Dosim. 2008;128(1):49-61.
  4. US Centers for Disease Control and Prevention. Population monitoring in radiation emergencies: a guide for state and local public health planners. Atlanta USA. 2007.
  5. Carinou E, Koukouliou V, Budayova M, Potiriadis, Kamenopoulou V. The calculation of a size correction factor for a whole body counter. Nucl Instrum Meth A. 2007;580(1):197-200. https://doi.org/10.1016/j.nima.2007.05.083
  6. Palmer HE, Roesch WC. A shadow shield wholebody counter. Health Phys. 1965;11(11):1213-1219. https://doi.org/10.1097/00004032-196511000-00010
  7. Toohey R, Palmer E, Anderson L, Berger C, Cohen N, Eisele G, Wachholz B, Burr W. Current status of whole body counting as a means to detect and quantify previous exposures to radioactive materials. Health Phys. 1991;60(S1):7-42. https://doi.org/10.1097/00004032-199101000-00001
  8. Oginni BM. Report on the use of Canberra Fastscan systems for in-vivo assay of a general population. Canberra. 2011.
  9. Krstic D, Cuknic O, Nikezic D. Application of MCNP5 software for efficiency calculation of a whole body counter. Health Phys. 2012;102(6): 657-663. https://doi.org/10.1097/HP.0b013e318244152b
  10. Moraleda M, Gomez-Ros JM, Lopez MA, Navarro T, Navarro JF. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of $^{241}$Am in skull. Nucl Instrum Meth A. 2004; 526(3):551-559. https://doi.org/10.1016/j.nima.2004.02.037
  11. Gualdrini G, Daffara C, Burn KW, Battisti P, Ferrari P, Pierotti L. Monte Carlo modelling of a voxel head phantom for in vivo measurement of bone-seeker nuclides. Radiat. Prot. Dosim. 2005; 115(1-4);320-323. https://doi.org/10.1093/rpd/nci016
  12. Panero J, Zelnik M. Human Dimension and Interior Space: a source book of design reference standards. Whitney Library of Design. New York. 1979.
  13. Canberra. Model 2250 FASTSCAN high-throughput whole body counter. 2002.
  14. American National Standards Institute/Health Physics Society. Specifications for the Bottle Manikin Absorption Phantom. McLean, VA: Health Physics Society; ANSI/HPS N13.35. 1999.
  15. Briesmeister JF. MCNP-A general Monte Carlo code for neutron and photon transport. LA-7396-M, Rev. 2. Los Alamos. 1986.
  16. Kramer GH, Burns LC, Guerriere S. Monte Carlo simulation of a scanning detector whole body counter and the effect of BOMAB phantom size on the calibration. Health Phys. 2002;83(4):526-533. https://doi.org/10.1097/00004032-200210000-00011
  17. Schlager M, Dederichs H, Lennartz R, Hill P, Hille R, Babenko VI, Nesterenko AV, Nesterenko VB. Intercalibration and intervalidation of in vivo monitors used for whole-body measurements within the framework of a German-Belarussian project. IRPA 11. 2004 (Published on CD-ROM).
  18. American National Standards Institute. Performance Criteria for Radiobioassay. ANSI/HPS N13.30. Health Physics Society. 1996.