Experimental
All reactions were carried out under an inert atmosphere of argon. THF was distilled from sodium with benzophen-one. Dichloromethane and DMF were distilled over CaH2. Pd(PPh3)4 and CuI were purchased from Aldrich and used without further purification. The compounds, 2,2'-bithiophen-5-yltributylstannane, tert-butyl 4-iodo-1H-pyrazole-1-carbox-ylate, tert-butyl 4-iodo-3,5-dimethyl-1H-pyrazole-1-carboxylate, and tert-butyl 4-iodo-3,5-diphenyl-1H-pyrazole-1-carboxylate were synthesized according to the reported pro-cedures.25,26 NMR spectra were recorded on a Varian Inova 400 MHz FT-NMR spectrometer at ambient temperature.
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-1H-pyrazole (1). A mixture of 2,2'-bithiophen-5-yltributylstannane (5.02 g, 11 mmol), tert-butyl 4-iodo-1H-pyrazole-1-carboxylate (2.94 g, 10 mmol), Pd(PPh3)4 (0.58 g, 0.5 mmol), and CuI (0.19 g, 1 mmol) in 50 mL of THF was stirred for 24 h under reflux condition and then cooled to room temperature. The solvent removed by vacuum and the residue was heated for 30 minutes under vacuum at 180 °C. After cooling at room temperature, purification of the product by flash column chromatography (SiO2: n-hexanes/DCM) provided the corre-sponding product 1 in 65% yield. 1H NMR (400 MHz, DMSO-d6) δ 13.09 (s, 1H), δ 7.97 (br s, 2H), δ 7.45 (dd, J = 5.1, 1.1 Hz, 1H), δ 7.24 (dd, J = 3.6, 1.1 Hz, 1H), δ 7.21 (d, J = 3.7 Hz, 1H), δ 7.16 (d, J = 3.7 Hz, 1H), δ 7.06 (dd, J = 5.1, 3.6 Hz, 1H); 13C NMR (101 MHz, DMSO) δ 136.7, 134.5, 133.3, 128.3, 124.9, 124.6, 123.5, 123.2, 115.0; HRMS (ESI) m/z calcd. for C11H8N2S2 [MH]+ 233.0207; found 233.0096.
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-3,5-dimethyl-1H-pyrazole (2). The reaction procedures was similar to the preparation of compound 1 except using tert-butyl 4-iodo-3,5-dimethyl-1H-pyrazole-1-carboxylate instead of tert-butyl 4-iodo-1H-pyrazole-1-carboxylate. (Yield 59%) 1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), δ 7.46 (dd, J = 5.1, 1.0 Hz, 1H), δ 7.30-7.22 (m, 2H), δ 7.07 (dd, J = 5.1, 3.6 Hz, 1H), δ 6.94 (d, J = 3.7 Hz, 1H), δ 2.30 (s, 6H); 13C NMR (101 MHz, DMSO-d6) δ 145.4, 136.6, 135.0, 134.01, 128.3, 124.9, 124.9, 124.3, 123.5, 110.1, 13.4, 10.5; HRMS (ESI) m/z calcd. for C13H12N2S2 [MH]+ 261.0520; found 261.0408.
Table 1.Crystallographic data for 1 and 3
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-3,5-diphenyl-1H-pyrazole (3). The reaction procedure was similar to the preparation of compound 1 except using tert-butyl 4-iodo-3,5-diphenyl-1H-pyrazole-1-carboxylate instead of tert-butyl 4-iodo-1H-pyrazole-1-carboxylate. (Yield 49%) 1H NMR (400 MHz, DMSO-d6) δ 13.59 (s, 1H), δ 7.52 (m, 4H), δ 7.46 (dd, J = 5.1, 0.9 Hz, 1H), δ 7.37 (m, 6H), δ 7.26 (d, J = 3.6 Hz, 1H), δ 7.24 (dd, J = 3.6, 0.9 Hz, 1H), ä 7.04 (dd, J = 5.1 , 3.6 Hz, 1H), δ 6.92 (d, J = 3.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 137.3, 136.4, 133.5, 129.8, 129.0-128.4 (br), 128.3, 127.4, 125.3, 125.1, 124.2, 123.9, 108.3, 99.6; HRMS (ESI) m/z calcd. for C23H16N2S2 [MH]+ 385.0833; found 385.0685.
X-ray Crystallography. All X-ray crystallographic data were collected on a Nonius Kappa CCD diffractometer using a graphite monochromator with MoKα radiation (λ = 0.71073 Å). The data were collected at 153 K using an Oxford Cryostream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reductions were performed using DENZO-SMN.27 The structure was solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using SHELXL-97.28 The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5 × Ueq for methyl hydrogen atoms). All the calculations were carried out with the SHELXTL pro-gram.29
References
- Muller-Dethlefs, K.; Hobza, P. Chem. Rev. 2000, 100, 143. https://doi.org/10.1021/cr9900331
- Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95, 2229. https://doi.org/10.1021/cr00038a018
- Riley, K. E.; Pitonak, M.; Jurecka, P.; Hobza, P. Chem. Rev. 2010, 110, 5023. https://doi.org/10.1021/cr1000173
- Zhou, H.-X.; Gilson, M. K. Chem. Rev. 2009, 109, 4092. https://doi.org/10.1021/cr800551w
- Jerey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin, 1991.
- Jerey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.
- Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press Inc.: New York, 1999.
- Etter, M. C. Acc. Chem. Res. 1990, 23, 120. https://doi.org/10.1021/ar00172a005
- Etter, M. C.; MacDonald, J.; Bernstein, J. Acta Crystallogr. Sect. B 1990, B46, 256.
- Bernstein, J.; Etter, M. C.; Leiserowitz, L. The Role of Hydrogen Bonding in Molecular Assemblies, In Structure Correlations; Dunitz, J. D., Burgi, H.-B., Eds.; VCH: Weinheim, 1994; Vol. 2, pp 431-507.
- Bernstein, J.; Davis, R. E.; Shimoni, L. Chang, N.-L. Angew. Chem. Int. Ed. 1995, 34, 1555. https://doi.org/10.1002/anie.199515551
- Foces-Foces, C.; Alkorta, I.; Elguero, J. Acta Crystallogr. Sect. B 2000, B56, 1018.
- Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR. Hydrophobic, Electronic, and Steric Constants; American Chemical Society, Washington, 1995.
- Infantes, L.; Motherwell, S. Struct. Chem. 2004, 15, 173. https://doi.org/10.1023/B:STUC.0000021525.74750.fa
- Infantes, L.; Motherwell, S. Chem. Commun. 2004, 1166.
- Alkorta, I.; Elguero, J.; Foces-Foces, C.; Infantes, L. Arkivoc 2006, ii, 15.
- Trofimenko, S. Chem. Rev. 1972, 72, 497. https://doi.org/10.1021/cr60279a003
- Mukherjee, R. Coor. Chem. Rev. 2000, 203, 151. https://doi.org/10.1016/S0010-8545(99)00144-7
- Klingele, J.; Dechert, S.; Meyer, F. Coor. Chem. Rev. 2009, 253, 2698. https://doi.org/10.1016/j.ccr.2009.03.026
- Olguin, J.; Brooker, S. Coor. Chem. Rev. 2011, 255, 203. https://doi.org/10.1016/j.ccr.2010.08.002
- La Cour, T.; Rasmussen, S. Acta Chem. Scand. 1973, 27, 1845. https://doi.org/10.3891/acta.chem.scand.27-1845
- Elguero, J.; Fruchier, A.; Pellegrin, V. J. Chem. Soc., Chem. Commun. 1981, 1207.
- Anguilar-Parrilla, F.; Cativiela, C.; Diaz de Villegas, M. D.; Elguero, J.; Foces-Foces, C.; Garcia, J. I.; Cano, F. H.; Limbach, H.-H.; Smith, J. A. S.; Toiron, C. J. Chem. Soc. Perkin Trans. 2 1992, 1.
- Yee, W. A.; Horwitz, J. S.; Goldbeck, R. A.; Einterz, C. M.; Kilger, D. S. J. Phys. Chem. 1983, 87, 380. https://doi.org/10.1021/j100226a003
- Rodriguez-Franco, M. I.; Dorronsoro, I.; Herandez-Higueras, A. I.; Antequera, G. Tetrahedron Lett. 2001, 42, 863. https://doi.org/10.1016/S0040-4039(00)02136-5
- Matharu, A. S.; Cowling, S. J.; Wright, G. Liq. Cryst. 2007, 34, 489. https://doi.org/10.1080/02678290601176559
- Otwinowski, Z.; Mino, W. In Methods in Enzymology, Macromolecular Crystallography, Part A; Carter, C. W., Sweet, R. M., Eds.; Academic Press: London, 1997; Vol. 276, pp 307-326.
- Sheldrick, G. M. SHELXL97. Program for the Refinement of Crystal Structures; University of Gottingen, Germany, 1994.
- Sheldrick, G. M. SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA, 1994.
Cited by
- Columnar Liquid Crystalline Self-Assembly of Hydrogen-Bonded Rod-Coil Diblock Complexes Created from Pyrazole/Benzoic acid Derivatives vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10556
- ChemInform Abstract: Synthesis and Self‐Assemblies of Bithiophene Functionalized 1H‐Pyrazole Derivatives. vol.45, pp.39, 2014, https://doi.org/10.1002/chin.201439139