DOI QR코드

DOI QR Code

A Study on the Reaction Characteristics of Steam Reforming Reaction over Catalyzed Porous Membrane

다공성 촉매 분리막을 이용한 수증기 개질 반응 특성 연구

  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 홍성창 (경기대학교 환경에너지시스템공학과) ;
  • 이상문 (경기대학교 환경에너지시스템공학과)
  • Received : 2014.02.06
  • Accepted : 2014.03.25
  • Published : 2014.04.10

Abstract

In this study, steam reforming reaction and surface characteristics of Ni metal foam plate were investigated. Valence state of Ni could be changed by pretreatment, and metallic Ni species exposed on surface as a active site play important role in steam reforming reaction. Porous catalytic membrane also was prepared by mixing of Ni metal foam plate and Ni-YSZ catalyst to control the pore size and assign the catalytic function in Ni metal foam plate. In SEM analysis results, Pore size of Ni metal foam plate could be controlled and Ni-YSZ catalyst well dispersed on surface. Ni based porous catalytic membrane had a similar steam reforming activity regardless of space velocity.

본 연구에서는 Ni metal foam 플레이트의 수증기 개질반응 및 표면 특성을 조사하였다. 전처리를 통하여 Ni의 산화상태를 변화시킬 수 있었으며, 활성 site로서 표면에 노출된 metallic Ni 종은 수증기 개질 반응활성에 중요한 역할을 한다. 또한 Ni metal foam 플레이트의 기공제어 및 촉매 기능을 부여하기 위하여 Ni metal foam 플레이트와 Ni-YSZ 촉매를 혼합하여 다공성 촉매 분리막을 제조하였다. SEM 분석 결과 metal foam 플레이트의 기공을 제어할 수 있었으며, 표면에 Ni-YSZ 촉매는 고르게 잘 분포되어 있었다. Ni 기반 다공성 촉매 분리막은 공간속도에 상관없이 상용촉매와 유사한 수증기 개질 활성을 가진다.

Keywords

References

  1. S. J. Jung, Green Energy and Environmental Catalyst, 299nd ed., 517-519, Jipmoon Press, Seoul Korea (2010).
  2. D. Chen, R. Lodeng, H. Svendsen, and A. Holmen, Hierarchical multiscale modeling of methane steam reforming reactions, Ind. Eng. Chem. Res., 50, 2600-2612 (2011). https://doi.org/10.1021/ie1006504
  3. X. L. Zhai, Y. H. Cheng, Z. T. Zhang, Y. Jin, and Y. Cheng, Steam reforming of methane over Ni catalyst in micro-channel reactor, Int. J. Hydrogen Energy., 36, 7105-7113 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.065
  4. J. R. Rostrup-Nielsen, New aspects of syngas production and use, Catal. Today., 63, 159-164 (2000). https://doi.org/10.1016/S0920-5861(00)00455-7
  5. C. J. Liu, J. Y. Ye, J. J. Jiang, and Y. X. Pan, Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and $CO_2$ Reforming of Methane, Chem. Cat. Chem., 3, 529-541 (2011).
  6. T. Kimura, T. Miyazawa, J. Nishikawa, S. Kado, K. Okumura, T. Miyao, S. Naito, K. Kunimori, and K. Tomishige, Development of Ni catalysts for tar removal by steam gasification of biomass, Appl. Catal. B., 68, 160-170 (2006). https://doi.org/10.1016/j.apcatb.2006.08.007
  7. R. Coll, J. Salvado, X. Farriol, and D. Montane, Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation, Fuel Process. Technol., 74, 19-31 (2001). https://doi.org/10.1016/S0378-3820(01)00214-4
  8. C. Wu and P. T. Williams, Nickel-based catalysts for tar reduction in biomass gasification, Biofuels, 2, 451-464 (2011). https://doi.org/10.4155/bfs.11.113
  9. S. K. Ryi, J. S. Park, D. K. Kim, T. H. Kim, and S. H. Kim, Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production, J. Membr. Sci., 339, 189-194 (2009). https://doi.org/10.1016/j.memsci.2009.04.047
  10. C. Y. Yu, B. K. Sea, D. W. Lee, S. J. Park, K. Y. Lee, and K. H. Lee, Effect of nickel deposition on hydrogen permeation behavior of mesoporous $\gamma$-alumina composite membranes, J. Colloid Interface Sci., 319, 470-476 (2008). https://doi.org/10.1016/j.jcis.2007.11.056
  11. D. W. Lee, S. J. Park, C. Y. Yu, S. K. Ihm, and K. H. Lee, Study on methanol reforming-inorganic membrane reactors combined with water-gas shift reaction and relationship between membrane performance and methanol conversion, J. Membr. Sci., 316, 63-72 (2008). https://doi.org/10.1016/j.memsci.2007.12.050
  12. S. S. Kim, H. H. Lee, and S. C. Hong, Pore control using the nano structured powders on the fabrication of porous membrane and its application, J. Nanosci. Nanotechnol., 12, 5564-5570 (2012). https://doi.org/10.1166/jnn.2012.6405
  13. J. Pu, Y. Tong, S. Wang, E. Sheng, and Z. Wang, Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications, J. Power Sources., 250, 250-256 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.108
  14. J. Xiong, X. Dong, Y. Dong. X. Hao, and S. Hampshire, Dual-production of nickel foam supported carbon nanotubes and hydrogen by methane catalytic decomposition, Int. J. Hydrogen Energy., 37, 12307-12316 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.068
  15. Y. Li, L. Zhu, K. Yan, J. Zheng, B. H. Chen, and W. Wang, A novel modification method for nickel foam support and synthesis of a metal-supported hierarchical monolithic Ni@Pd catalyst for benzene hydrogenation, J. Chem. Eng., 226, 166-175 (2013). https://doi.org/10.1016/j.cej.2013.04.042