DOI QR코드

DOI QR Code

언어 네트워크 분석을 이용한 신종 감염병 보도 분석: 다제내성균 보도 사례를 중심으로

A semantic network analysis of news reports on an emerging infectious disease by multidrug-resistant microorganism

  • Park, Kisoo (Dept. of Healthcare Management, Korea University) ;
  • Lee, Guiohk (Dept. of Communication Arts, Sejong University) ;
  • Choi, Myung-Il (Dept. of Advertising & Public Relations, Namseoul University)
  • 투고 : 2013.11.10
  • 심사 : 2014.02.20
  • 발행 : 2014.02.28

초록

이 연구는 여러 항생제에 내성을 지닌 다제내성균에 대해 미디어가 어떻게 보도하는지를 알아보기 위해, 기사 제목에 나타난 핵심어를 언어 네크워크 분석을 이용하여 살펴보았다. 이를 위해 한국언론진흥재단의 기사검색사이트인 카인즈(www.kinds.or.kr)와 언론사의 홈페이지를 통해 약 28개 언론사를 대상으로 2010년 6월 1일부터 2011년 12월 31일까지 229개의 다제내성균 관련 기사를 분석하였다. 먼저, 뉴스 제목에 나타난 핵심어를 분석한 결과, 기사 제목에서 '슈퍼박테리아'(155건)가 가장 많이 사용된 것으로 나타났으며, 불안감을 촉발시키는 '감염'(63건) 용어도 많은 것으로 나타났다. 신종 감염병 보도의 전체 네트워크 구조는 '국내', '다제내성균', '첫', '항생제', '슈퍼박테리아', '발생', '감염' 등의 핵심어를 중심으로 형성된 반면, '관련주', '의료진', '안전' 등은 네크워크 중심에서 크게 벗어나 있었다.

The present study performed semantic network analysis of the keywords in the headlines of newspapers to investigate the media coverage of the multidrug-resistant microorganisms(MDROs) which is resistant to antibiotics. For this purpose, 229 news stories on MDROs in 28 newspapers from June 1, 2010 to December 31, 2011 were analyzed. The news stories were gathered from the Korea Press Foundation's news database, KINDS (www.kinds.or.kr) and websites of Korean newspapers. The analysis of the keywords revealed 'superbacteria' appeared most frequently (n=155) followed by 'infection' (n=63) which arouses fear among readers. While network was structured with the keywords such as 'domestic', 'multidrug-resistant microorganisms', 'first', 'antibiotics', 'outbreak' and 'infection', the keywords such as 'MDROs related stocks', 'medical staff', and 'safety' were on the periphery of the network.

키워드

참고문헌

  1. C. Y. Park, The impact of medical news on the public's attitude regarding health and disease: Korean Journal of Journalism & Communication Studies, Vol. 2, No. 9, pp. 194-222, 2003.
  2. C. Y. Park, Son, M. S, Public health and medical news. Seoul: Communication Books. 2001.
  3. Y. K. Ju, M. S. You, Representing health risk: A quantitative analysis of Korean news medis's coverage of emerging diseases and chronic ones, Korean Journal of Journalism & Communication Studies, Vol. 54, No. 2, pp. 363-381, 2010.
  4. L. J. Bomlitz, M. Brezis, Misrepresentation of health risks by mass media, Journal of Public Health, Vol. 30, pp. 202-204, 2008. https://doi.org/10.1093/pubmed/fdn009
  5. G. J. Oh, Comprisons of Attitude on Media's Report for Avian Influenza between Poultry Breeder and Non-breeder. Journal of agricultural medicine & community health, Vol. 34, No. 1, pp. 58-66, 2009. https://doi.org/10.5393/JAMCH.2009.34.1.058
  6. M. McQuail, McQuail's Mass Communication Theory(6th ed.). London: Sage. 2010.
  7. K. Viswanath, K. M. Emmons, Message effects and social determinants of health: Its application to cancer disparity, Journal of Communication, Vol. 56, pp. 238-264, 2006. https://doi.org/10.1111/j.1460-2466.2006.00292.x
  8. A. Dawson, Risk perceptions and ethical public health policy: MMR vaccination in the UK. Poiesis Prax, Vol. 3, pp. 229-241, 2005. https://doi.org/10.1007/s10202-005-0002-3
  9. D. Glik, Risk communication for public health emergencies, Annual Review of Public Health, Vol. 28, 33-54, 2007. https://doi.org/10.1146/annurev.publhealth.28.021406.144123
  10. W. Lowrey, K. Gower, W. Evans, J. Mackay, Assessing newspaper preparedness for public health emergencies, Journalism and Mass Communication Quarterly, Vol. 83, pp. 362-380, 2006. https://doi.org/10.1177/107769900608300209
  11. B. Holmes, N. Hennrich, S. Hencock, V. Lestou, Communicating with the public during health crises: Experts' experiences and opinions, Journal of Risk Research, Vol. 12, No. 6, pp. 793-807, 2009. https://doi.org/10.1080/13669870802648486
  12. R. Popping, Computer-assisted text analysis. London, Thousand Oaks: Sage Publications. 2000.
  13. J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine. MA: Addison-Wesley. 1984.
  14. H. W. Park, L. Leydesdorff, Understanding the KrKwic: A computer program for the analysis of Korean text. Journal of The Korean Data Analysis Society, Vol. 6, No. 5, pp. 1377-1388, 2004.
  15. S. P. Borgatti, M. G. Everett, L. C. Freeman, Ucinet for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies. 2002.
  16. S. J. Lee, J. H. Choi, H. W. Kim, Semantic network analysis on the MIS research keywords: APJIS and MIS Quarterly 2005-2009, Asia Pacific Journal of Information Systems, Vol. 20, No. 4, pp. 25-51. 2010. https://doi.org/10.1111/j.1365-2575.2008.00324.x
  17. R. A. Hanneman, R. Mark, Introduction to social network methods. Riverside, CA: University of California, Riverside(published in digital form at http://faculty.ucr.edu/-hanneman/.
  18. L. J. Bomlit, M. Brezis, Misrepresentation of health risks by mass media, Journal of Public Health, Vol. 30, pp. 202-204, 2008. https://doi.org/10.1093/pubmed/fdn009