DOI QR코드

DOI QR Code

Response Analysis of Data Acquired by Marine Loop Electromagnetic System Using Three-Dimensional Modeling Based on Integral Equation

적분방정식 기반의 3차원 모델링을 이용한 소형 루프형 해양 전자탐사 자료의 반응 분석

  • Ko, Hwicheol (Korea Resources Corporation (KORES)) ;
  • Park, In Hwa (Geothermal Resources Department, KIGAM (Korea Institute of Geoscience And Mineral Resources)) ;
  • Lee, Seong Kon (Geothermal Resources Department, KIGAM (Korea Institute of Geoscience And Mineral Resources))
  • 고휘철 (한국광물자원공사) ;
  • 박인화 (한국지질자원연구원 지열자원연구실) ;
  • 이성곤 (한국지질자원연구원 지열자원연구실)
  • Received : 2013.10.02
  • Accepted : 2014.02.07
  • Published : 2014.02.28

Abstract

We analyzed response patterns of test field data acquired with new small loop electromagnetic (EM) system using three-dimensional (3D) electromagnetic modeling code. The size and shape of a conductor was adopted as experimental parameters for EM modeling to understand influencing factors of the response patterns due to a metallic object on the seafloor. Obtaining the responses for four models of difference sizes and shapes through 3D EM modeling, we confirmed that the shape of the object have a more critical factor on the response pattern than size. We also calculated "ppm" values with respect to different altitudes of the sensor and source frequencies. The modeling results show that the consistency of sensor altitude is important and imaginary part of ppm response is more sensitive than real part. We also visualized the contour map of the real and imaginary part of ppm value as a function of frequency and altitude so that we can estimate proper altitude for source frequency band of our survey system. The results of this paper are anticipated to give proper parameters in survey construction for seafloor massive sulfide deposit.

심해탐사를 위해 새롭게 개발된 소형 루프형 해양 전자탐사 시스템의 실해역 실험 결과의 반응 양상을 적분방정식 기반의 3차원 모델링을 통하여 분석하였다. 수심 약 300 m 해저환경에서 획득한 금속 이상체의 전자기 반응 양상에 대한 영향인자를 분석하기 위해 이상체의 크기와 모양을 다르게 설정하여 모델링을 수행하였다. 모델링 결과 분석을 통하여 이상체의 모양이 크기보다 반응 양상에 더 큰 영향을 주는 것을 확인하였다. 탐사고도와 주파수에 따른 반응값 변화를 알아보기 위해 모델링을 수행하였고 이를 통해 일정한 탐사 고도 유지의 필요성과 주파수 대역에 따른 허수부의 민감도를 확인하였다. 또한 탐사 고도와 주파수에 따른 반응값을 단면 그래프로 나타내어 시스템에 사용되는 주파수 대역에 대한 적절한 탐사고도를 제시하였다. 본 연구를 통해 도출된 결과는 해저 열수광상 실해역 탐사 설계 시 매개변수 설정에 있어 유용한 정보를 줄 것으로 예상된다.

Keywords

References

  1. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75(5), 75A67-75A81. https://doi.org/10.1190/1.3483451
  2. Gochioco, L., and Ruev, F., 2006, Detecting and imaging hardto- find abandoned wells and pipelines, The Leading Edge, 25(3), 358-361. https://doi.org/10.1190/1.2184106
  3. Huang, H., and Fraser, D. C., 2000, Airborne resistivity and susceptibility mapping in magnetically polarizable areas, Geophysics, 65(2), 502-511. https://doi.org/10.1190/1.1444744
  4. Huang H., and Fraser, D. C., 2002, The use of quad-quad resistivity in helicopter electromagnetic mapping, Geophysics, 67(2), 459-467. https://doi.org/10.1190/1.1468605
  5. Kang, S., Seol, S. J., and Byun, J., 2010, An Investigation in operating and design parameters for gas hydrate exploration using marine CSEM, Journal of the Korean Society of Mineral and Energy Resources Engineers, 47(2), 139-150.
  6. Kang, S., Seol, S. J., Chung, Y., and Kwon, H.-S., 2013, Pitfalls of 1D inversion of small-loop electromagnetic data for detecting man-made objects, Journal of Applied Geophysics, 90, 96-109. https://doi.org/10.1016/j.jappgeo.2013.01.003
  7. Ko, H. C., Lee, S. K., Park, I. H., Cho, S.-J., Won, I. J., Funak, F., and Kim, H. S., 2012, Feasibility study of ROV-towed marine loop electromagnetic system through off-shore experiment, Journal of the Korean Society of Mineral and Energy Resources Engineers, 49, 766-777. https://doi.org/10.12972/ksmer.2012.49.6.766
  8. Lee, K. H., Jang, H., Jang, H., and Kim, H., 2011, Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling, Geosciences Journal, 15(3), 297-303. https://doi.org/10.1007/s12303-011-0030-z
  9. Muller, H., Dobeneck, T. V., Hilgenfeldt, C., Filipo, B. S., Rey, D., and Rubio, B., 2012, Mapping the magnetic susceptibility and electric conductivity of marine surficial sediments by benthic EM profiling, Geophysics, 77(1), 43-56.
  10. Muller, H., von Dobeneck, T., Nehmiz, W., and Hamer, K., 2011, Near-surface electromagnetic, rock magnetic, and geochemical fingerprinting of submarine freshwater seepage at Eckernförde Bay (SW Baltic Sea), Geo-Marine Letters, 31(2), 123-140. https://doi.org/10.1007/s00367-010-0220-0
  11. Nabighian, M. N., 1988, Electromagnetic Methods in Applied Geophysics, Volume 1, Theory, Soc of Exploration Geophysicists.
  12. Nakayama, K., and Saito, A., 2011, Marine time-domain electromagnetic technologies using ROV, BUTSRI-TANSA, 64(4), 255-266.
  13. Noh, K., Kang, S., Seol, S. J., and Byun, J., 2012, Computation of apparent resistivity from marine controlled-source electromagnetic data for identifying the geometric distribution of gas hydrate, Jigu-Mulli-wa-Mulli-Tamsa, 15(2), 75-84. https://doi.org/10.7582/GGE.2012.15.2.075
  14. Song, S.-H., Kim, R.-Y., Kang, H.-J., and Cho, I.-K., 2011, Applicability of the small-loop EM method in the sallow marine environment, Jigu-Mulli-wa-Mulli-Tamsa, 14(2), 152-157.
  15. Swidinsky, A., Holz, S., and Jegen, M., 2012, On mapping seafloor mineral deposits with central loop transient electromagnetics, Geophysics, 77(3), E171-E184. https://doi.org/10.1190/geo2011-0242.1
  16. Won, I. J., Keiswetter, D. A., Hanson, D. R., and Hall, T. M., 1997, GEM-3: A monostatic broadband electromagnetic induction sensor, Journal of Environmental and Engineering Geophysics, 2(1), 53-64. https://doi.org/10.4133/JEEG2.1.53
  17. Zhdanov, M. S., Lee, S. K., and Yoshioka, K., 2006, Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity, Geophysics, 71(6), 333-345. https://doi.org/10.1190/1.2358403