DOI QR코드

DOI QR Code

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Wonju, Korea

레일리파 분산을 역산하여 구한 횡파속도를 이용한 원주시의 부지특성

  • Kim, Chungho (Department of Geophysics, Kangwon National University) ;
  • Ali, Abid (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University)
  • Received : 2013.12.23
  • Accepted : 2014.02.06
  • Published : 2014.02.28

Abstract

To reveal shear-wave velocities ($v_s$) and site characterization of Wonju, Korea, Rayleigh waves were recorded at 78 sites of lower altitude using 12 to 24 4.5-Hz vertical geophones for 20 days during the period of February to September 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted using the damped least-squares method to derive $v_s$ models. From these 1-D models, the average $v_s$ to a depth of 30 m ($v_s30$), $v_s$ of weathered rocks, depths to these basement rocks, and average $v_s$ of the overburden layer were derived to be $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, and $418{\pm}13m/s$, respectively, in the 95% confidence range. To determine adequate proxies for $v_s30$, we computed correlation coefficients of $v_s30$ with topographic slope (r = 0.46) and elevation (r = 0.43). An empirical linear relationship is presented as a combination of individually estimated $v_s30$ with weighting factors of 0.45, 0.45, and 0.1 for topographic slope, elevation, and mapped lithology, respectively. Due to a weak correlation between $v_s30$ obtained from inversion of dispersion curves and the proxy-based estimation (r = 0.50), however, the relatively large error range should be considered for applications of this relationship.

원주시 저고도 지역에서의 천부 횡파속도($v_s$) 및 부지특성을 파악하기 위해 2013년 2월부터 2013년 9월 사이의 20일간 4.5 Hz 수직 지오폰 12 ~ 24개를 이용하여 원주시계 내의 78 지점에서 레일리파를 기록하였다. 레일리파 분산곡선은 확장된 공간자기상관함수법으로 구하였고, $v_s$를 구하기 위하여 감소최소자승법으로 역산하였다. 이들 1-D 모델로부터 구한 풍화암질 기반암의 깊이($D_b$), 기반암의 횡파속도($v_s^b$), 토양층의 평균 횡파속도($\bar{v}_s^s$), 30 m까지 평균 횡파속도($v_s30$)는 95% 신뢰구간에서 각각 $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, $418{\pm}13m/s$로 산출되었다. $v_s30$의 적절한 지시자를 결정하기 위해서 $v_s30$과 지표면 경사도(r = 0.46) 및 고도(r = 0.43)와의 상관계수를 계산하였고, 개별적으로 평가한 $v_s30$과의 상관성을 종합하여 지표면 경사도, 고도, 암상의 가중치를 각각 0.45, 0.45, 0.1으로 하는 선형 경험식을 제시하였다. 그러나 이 경험식과 역산으로 구한 $v_s30$의 상관성이 미약하여(r = 0.50), 적용시에는 상대적으로 큰 오차범위를 고려해야 할 것이다.

Keywords

References

  1. Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin Earthquake Research Institute, 35, 415-456.
  2. Allen, T. I., and Wald, D. J., 2009, On the Use of High-Resolution Topographic Data as a Proxy for Seismic Site Conditions (VS30), Bulletin of the Seismological Society of America, 99, 935-943. https://doi.org/10.1785/0120080255
  3. Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan E., Silva, W. J., Chiou, B., Wooddell, K., Graves, R., Kottke, A., Boore, D. M., Kishida, T., and Donahue, J. L., 2013, PEER NGA-West2 Database, PEER Report 2013/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
  4. Borcherdt, R. D., 1994, Estimates of site-dependent response spectra for design (methodology and justification), Earthquake Spectra, 10, 617-653. https://doi.org/10.1193/1.1585791
  5. Chiou, B. S.-J., and Youngs, R. R., 2008, An NGA model for the average horizontal component of peak ground motion and response spectra, Earthq. Spectra, 24, 173-216. https://doi.org/10.1193/1.2894832
  6. CTBTO, 2013, Department of State, USA, http://www.ctbto.org/verification-regime/featured-stations/types/primary-seismic/ps31-wonju-republic-of-korea/, Comprehensive Nuclear-Test-Ban Treaty Organizations (December 2, 2013 Accessed).
  7. Haskell, N. A., 1953, The dispersion of surface waves in multilayered media, Bulletin of the Seismological Society of America, 43, 17-34.
  8. ICBO., 1997, 1997 Uniform Building Code, 2, Structural Engineering Design Provisions.
  9. Jung, J., and Kim, K. Y., 2014, Site characterization using shear-wave velocities inverted from Rayleigh-wave dispersion curves in Chuncheon, Korea, Geophysics and Geophysical Exploration, 17, 1-10. https://doi.org/10.7582/GGE.2014.17.1.001
  10. Jung, J., Park, I., Han, A., Ali, A., Park, Y. H., and Kim, K. Y., 2013, Near-surface shear-wave velocities in Chuncheon, Korea derived from passive surface waves, First Near-surface Geophysics Asia Pacific Conference, Beijing, July 17-19, SEG and CGS.
  11. Kang, T. S., and Baag, C. E., 2004, The 29 May 2004, Mw=5.1, offshore Uljin earthquake, Korea, Geosciences Journal, 8, 115-123. https://doi.org/10.1007/BF02910189
  12. Keceli, A., 2012, Soil parameters which can be determined with seismic velocities, Jeofizik, 16, 17-29.
  13. Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., and Okuzumi, K., 1990, Estimation of P- and S-wave velocities in deep soil deposits for evaluating vibrations in earthquakes, SINEN-SAIGAI-KAGAKU, 9, 1-17.
  14. Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., and Kuo, K. W., 2012, Site classification and $v_s30$ estimation of free-field TSMIP stations using the logging data of EGDT, Engineering Geology, 129-130, 68-75. https://doi.org/10.1016/j.enggeo.2012.01.013
  15. Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B., 2001, Site classification of Taiwan freefield strong-motion stations, Bulletin of the Seismological Society of America, 91, 1283-1297.
  16. Ling, S., and Okada, H., 1993, An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors, 89th SEGJ Conference, 44-48.
  17. Ludwig, W. J., Nafe, J. E., and Drake, C. L., 1970, Seismic refraction in The Sea, 4, Wiley-interscience, 74.
  18. Marquart, C. W., 1963, An algorithm for least square estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441. https://doi.org/10.1137/0111030
  19. Ministry of Construction and Transportation, 1997, Seismic design code, 36.
  20. Okada, H., 2003, The microtremor survey method, Society of Exploration Geophysicists, 127.
  21. Park, B. K., Chang, H. W., and Woo, Y. K., 1989, Geological map of Korea; 1:50,000 Wonju, Korea Institute of Energy and Resources, Seoul, Korea.
  22. Park, C. B., Miller, R. D., Ryden, N., Xia, J., and Ivanov, J., 2005, Combined use of active and passive surface waves, JEEG, 10, 323-334. https://doi.org/10.2113/JEEG10.3.323
  23. Romero, S., and Rix, G. J., 2001, Regional variations in near-surface shear wave velocity in the greater Memphis area. Engineering Geology, 62, 137-158. https://doi.org/10.1016/S0013-7952(01)00059-X
  24. Schwab, F. A., and Knopoff, L., 1972, Fast Surface Wave and Free Mode Computations. In: B.A. Bolt (Ed.), Methods in Computational Physics, 11, Academic Press, New York and London, 87-180.
  25. Sun, C. G., Chung, C. K., and Kim, D. S., 2005, A proposition of site coefficients and site classification system for design ground motions at inland of the Korean peninsula. Journal of the Korean Geotechnical Society, 21, 101-115.
  26. Sun, C. G., Chung, C. K., and Kim, D. S., 2007, Determination of mean shear wave velocity to the depth of 30 m based on shallow shear wave velocity profile, Journal of the Earthquake Engineering Society of Korea, 11, 45-57. https://doi.org/10.5000/EESK.2007.11.1.045
  27. Thompson, E. M., and Wald, D. J., 2012, Developing $v_s30$ site-condition maps by combining observations with geologic and topographic constraints, 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September 24-28.
  28. Thomson, W. T., 1950, Transmission of elastic waves through a stratified solid, Journal of Applied Physics, 21, 89-93. https://doi.org/10.1063/1.1699629
  29. Wald, D. J., and Allen, T. I., 2007, Topographic slope as a proxy for seismic site conditions and amplification, Bulletin of the Seismological Society of America, 97, 1379-1395. https://doi.org/10.1785/0120060267
  30. Wald, D. J., McWhirter, L., Thompson, E. M., and Hering, A. S., 2011, A new strategy for developing $v_s30$ maps, 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion. August 23-26, Santa Barbara, U.S.A.
  31. Wills, C. J., and Clahan, K. B., 2006, Developing a map of geologically defined site-condition categories for California, Bulletin of the Seismological Society of America, 96, 1483-1501. https://doi.org/10.1785/0120050179
  32. Wills, C., and Gutierrez, C., 2008, Investigation of geographic rules for improving site-conditions mapping. California Geologic Survey Final Technical Report No. 07HQGR0061.
  33. Xia, J., Miller, R. D., and Park, C. B., 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64, 691-700. https://doi.org/10.1190/1.1444578
  34. Yong, A., Hough, S. E., Abrams, M. J., Cox, H. M., Wills, C. J., and Simila, G. W., 2008, Site characterization using integrated imaging analysis methods on satellite data of the Islamabad, Pakistan region, Bulletin of the Seismological Society of America, 98, 2679-2693. https://doi.org/10.1785/0120080930
  35. Yong, A., Hough, S. E., Iwahashi, J., and Braverman, A., 2012, Terrain-based site conditions map of California with implications for the contiguous United States, Bulletin of the Seismological Society of America, 102, 114-128. https://doi.org/10.1785/0120100262

Cited by

  1. Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea vol.17, pp.1, 2014, https://doi.org/10.7582/GGE.2014.17.1.001
  2. Comparative analyses of seismic site conditions and microzonation of the major cities in Gangwon Province, Korea vol.49, pp.2, 2018, https://doi.org/10.1071/EG16136