DOI QR코드

DOI QR Code

레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea

  • 정진훈 (강원대학교 지구물리학과) ;
  • 김기영 (강원대학교 지구물리학과)
  • Jung, JinHoon (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University)
  • 투고 : 2013.12.19
  • 심사 : 2014.01.28
  • 발행 : 2014.02.28

초록

춘천시 인구 밀집지역의 지반특성 파악 및 분류를 목적으로 2011년 1월부터 2013년 5월까지 고유진동수 1 Hz인 수직성분 속도센서 4대와 4.5 Hz 수직 지오폰 24개를 이용하여 춘천시계 내의 50 지점(산림지 4 곳 포함)에서 레일리파를 기록하였다. 확장된 공간자기상관함수법으로 얻은 레일리파 분산곡선을 두께 1 m인 40개 수평층의 횡파속도($v_s$) 모델로 역산하였다. 또한 이를 바탕으로 풍화암질 기반암의 깊이($D_b$) 및 횡파속도($v_s^b$), 토양층의 평균 횡파속도($\bar{v}_s^s$), 깊이 30m까지의 횡파속도($v_s30$)를 각각 산출하였다. 46개 저고도 측점에서 구한 $D_b$, $v_s^b$, $\bar{v}_s^s$, $v_s30$는 각각 5 ~ 29 m, 404 ~ 561 m/s, 208 ~ 375 m/s, 226 ~ 583 m/s의 범위를 갖는다. 이는 국내 내진설계기준에 따르면 단단한 토사지반 $S_D$와 매우 조밀한 토사지반 및 연암지반인 $S_C$에 해당한다. $v_s30$의 대표적 지시자를 파악하기 위해 토지피복 종류, 기반암 암상, 지표면 경사도 및 지표 고도와의 상관도를 분석하였다. 그 결과, 가장 좋은 지시자인 고도와의 상관성(r = 0.41)도 미약하게 나타나서, 상대적으로 작은 면적의 춘천시만을 대상으로 적용하기에는 신뢰성에 한계가 있다고 판단된다.

To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

키워드

참고문헌

  1. Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin Earthquake Research Institute, 35, 415-456.
  2. Allen, T. I., and Wald, D. J., 2009, On the Use of High-Resolution Topographic Data as a Proxy for Seismic Site Conditions (VS30), Bull. Seism. Soc. Am, 99, 935-943. https://doi.org/10.1785/0120080255
  3. Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B., Wooddell, K., Graves, R., Kottke, A., Boore, D. M., Kishida, T., and Donahue, J. L., 2013, PEER NGA-West2 Database, PEER Report 2013/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
  4. Boore, D. M., 2004, Estimating (or NEHRP Site Classes) from shallow velocity models (Depths < 30 m), Bull. Seism. Soc. Am., 94, 591-597. https://doi.org/10.1785/0120030105
  5. Borcherdt, R. D., 1994, Estimates of site-dependent response spectra for design (methodology and justification), Earthquake Spectra, 10, 617-653. https://doi.org/10.1193/1.1585791
  6. BSSC., 1997, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 1-Provisions, 1997 Edition, Building Seismic Safety Council, Washington D. C.
  7. Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 57, 1408-1418. https://doi.org/10.1109/PROC.1969.7278
  8. Chiou, B. S.-J., and Youngs, R. R., 2008, An NGA model for the average horizontal component of peak ground motion and response spectra, Earthq. Spectra, 24, 173-216. https://doi.org/10.1193/1.2894832
  9. Haskell, N. A., 1953, The dispersion of surface waves in multilayered media, Bull. Seism. Soc. Am., 43, 17-34.
  10. Hayashi, K., and Suzuki, H., 2004, CMP cross-correlation analysis of multi-channel surface-wave data, Exploration Geophysics, 35, 7-13. https://doi.org/10.1071/EG04007
  11. Henstridge, J. D., 1979, A signal processing method for circular arrays, Geophysics, 44, 179-184. https://doi.org/10.1190/1.1440959
  12. ICBO., 1997, 1997 Uniform Building Code, 2, Structural Engineering Design Provisions.
  13. Kang, S. Y., and Kim, K. H., 2011, Effects of DEM resolutions in site classification, Journal of the Korean Society for Geo-Spatial Information System, 19, 21-28.
  14. Kang, S. Y., and Kim, K. H., 2012, Developing a seismic site classification map of Korea using geologic and topographic maps, Disaster Advances, 5, 16-24.
  15. Keceli, A., 2012, Soil parameters which can be determined with seismic velocities, Jeofizik, 16, 17-29.
  16. Kim, C., Ali, A., and Kim, K. Y., 2014, Site characterization using shear-wave velocities inverted from Rayleigh-wave dispersion curves in Wonju, Korea, Geophysics and Geophysical Exploration, 17, 11-20. https://doi.org/10.7582/GGE.2014.17.1.011
  17. Kim, K. Y., Kim, W. J., and Park, Y. H., 2012, Inversion of Rayleigh-wave Dispersion Curves for Near-surface Shear-wave Velocities in Chuncheon Area, Geophysics and Geophysical Exploration, 15, 1-7. https://doi.org/10.7582/GGE.2012.15.1.001
  18. Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., and Okuzumi, K., 1990, Estimation of P- and S-wave velocities in deep soil deposits for evaluating vibrations in earthquakes, SINEN-SAIGAI-KAGAKU, 9, 1-17.
  19. Lee, D. S., Lee, H. T., Nam, K. S., and Yang, S. Y., 1974, Explanatory text of the geological map of Chuncheon sheet; 1:50,000 Chuncheon Sheet 6727-IV.
  20. Ludwig, W. J., Nafe, J. E., and Drake, C. L., 1970, Seismic refraction in The Sea, 4, Wiley-interscience, 74.
  21. Marquart, C. W., 1963, An algorithm for least square estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441. https://doi.org/10.1137/0111030
  22. Matsuoka, M., Wakamatsu, K., Fujimoto, F., and Midorikawa, S., 2006, Average shear-wave velocity mapping using Japan engineering geomorphologic classification map, J. Struct. Mecha. Earthq. Eng., 23, 57-68. https://doi.org/10.2208/jsceseee.23.57s
  23. Matsuoka, T., Umezawa N., and Makishima, H., 1996, Experimental studies on the applicability of the spatial autocorrelation method for estimation of geological structures using microtremos, Butsuri-Tansa (Geophys. Explor.), 49, 26-41.
  24. Ministry of Construction and Transportation, 1997, Seismic design code, 36.
  25. Ministry of Environment, 2013, Land cover map (2008-2010), http://egis.me.go.kr/ewebgis/webgis.jsp (November 7, 2013 Accessed).
  26. Nanometrics, 2007, Taurus Portable Seismograph User Guide, 145-149.
  27. Nazarian, S., and Stokoe, II, K. H., 1984, In situ shear wave velocities from spectral analysis of surface waves: Proceedings of the World Conference on Earthquake Engineering, 8, San Francisco, Calif., July, 21-28.
  28. Okada, H., 2003, The microtremor survey method, Society of Exploration Geophysicists, 127.
  29. Park, C. B., Miller, R. D., Ryden, N., Xia, J., and Ivanov, J., 2005, Combined use of active and passive surface waves, JEEG, 10, 323-334. https://doi.org/10.2113/JEEG10.3.323
  30. Park, C. B., Miller, R. D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64, 800-808. https://doi.org/10.1190/1.1444590
  31. Schwab, F. A., and Knopoff, L., 1972, Fast Surface Wave and Free Mode Computations. In: B.A. Bolt (Ed.), Methods in Computational Physics, 11, Academic Press, New York and London, 87-180.
  32. Sun, C. G., Chung, C. K., and Kim, D. S., 2007, Determination of mean shear wave velocity to the depth of 30 m based on shallow shear wave velocity profile, Journal of the Earthquake Engineering Society of Korea, 11, 45-57. https://doi.org/10.5000/EESK.2007.11.1.045
  33. Sun, C. G., 2009, Seismic zonation on site responses in Daejeon by building geotechnical information system based on spatial GIS framework, Journal of the Earthquake Engineering Society of Korea, 25, 5-19.
  34. Thomson, W. T., 1950, Transmission of elastic waves through a stratified solid, Journal of Applied Physics, 21, 89-93. https://doi.org/10.1063/1.1699629
  35. Toksz, M. N., 1964, Microseisms and an attempted application to exploration, Geophysics, 29, 154-177. https://doi.org/10.1190/1.1439344
  36. Wald, D. J., and Allen, T. I., 2007, Topographic slope as a proxy for seismic site conditions and amplification, Bull. Seismol. Soc. Am., 97, 1379-1395. https://doi.org/10.1785/0120060267
  37. Wills, C. J., and Clahan, K. B., 2006, Developing a map of geologically defined site- condition categories for California, Bull. Seismol. Soc. Am., 96, 1483-1501. https://doi.org/10.1785/0120050179
  38. Xia, J., Miller, R. D., and Park, C. B., 1999, Estimation of nearsurface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64, 691-700. https://doi.org/10.1190/1.1444578
  39. Yong, A., Hough, S. E., Iwahashi, J., and Braverman, A., 2012, Terrain-based site conditions map of California with implications for the contiguous United States, Bull. Seismol. Soc. Am., 102, 114-128. https://doi.org/10.1785/0120100262

피인용 문헌

  1. Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Wonju, Korea vol.17, pp.1, 2014, https://doi.org/10.7582/GGE.2014.17.1.011
  2. Comparative analyses of seismic site conditions and microzonation of the major cities in Gangwon Province, Korea vol.49, pp.2, 2018, https://doi.org/10.1071/EG16136