References
- Park, J. H., Park, T. S., Baek, I. H. and Park, S., "The Status of Carbon Dioxide Capture and Storage Technology," Polyurethane, 3(1), 28-33(2010).
-
Park, J. H. and Baek, I. H., "Status and Prospect of Pre-combustion
$CO_2$ Capture Technology," KIC News, 12(1), 3-14(2009). - Park, J. H. and Kim, J. P., "Research Trend of Oxygen Separation using Ion Transport Membrane," KIC News, 14(3), 14-24(2011).
- Yi, C., "Advances of Carbon Capture Technology," KIC News, 12(1), 30-42(2009).
- Seo, B., Kim, J., Ahn, H. and Lee, K.-H., "The State of the Art of Membrane Technology for Separation of Carbon Dioxide from Flue Gas," KIC News, 14(3), 1-13(2011).
-
Vaska, L., Schreiner, S., Felty, R. A. and Yu, J. Y., "Catalytic Reduction of Carbon Dioxide to Methane and Other Species Via Formamide Intermediation: Synthesis and Hydrogenation of HC(O)
$NH_2$ in the Presence of$[Ir(Cl)(CO)(Ph_3P)_2]$ ," J. Mol. Catal. 52(2), 11-16(1989). https://doi.org/10.1016/0304-5102(89)80020-3 - Kojima, F., Aida, T. and Inoue, S., "Fixation and Activation of Carbon Dioxide on Aluminum Porphyrin. Catalytic Formation of a Carbamic Ester from Carbon Dioxide, Amine, and Epoxide," J. Am. chem. Soc., 108(3), 391-395(1986). https://doi.org/10.1021/ja00263a008
-
Halmann, M., "Chemical Fixation of Carbon DioxideMethods for Recycling
$CO_2$ into Useful Products," CRC Press, Boca Raton (1993). -
Parkinson, B. A. and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic
$CO_2$ Reduction," Nature, 309, 148-149(1984). https://doi.org/10.1038/309148a0 - Sullivan, B. P., Krist, K. and Guard, H. E., "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier, Amsterdam(1993).
- Wasmus, S., Cattaneo, E. and Vielstich, W., "Reduction of Carbon Dioxide to Methane and Ethene-an on-line MS Study with Rotating Electrodes," Electrochim. Acta, 35(4), 771-775(1990). https://doi.org/10.1016/0013-4686(90)90014-Q
-
K. W. Jr Frese, J., "Electrochemical Reduction of
$CO_2$ at Intentionally Oxidized Copper Electrodes," Electrochem. Soc. 138(11), 3338-3344(1991). https://doi.org/10.1149/1.2085411 -
Taguchi, S. and Aramata, A., "Surface-structure Sensitive Reduced
$CO_2$ Formation on Pt Single Crystal Electrodes in Sulfuric Acid Solution," Electrochim. Acta, 39(17), 2533-2537(1994). https://doi.org/10.1016/0013-4686(94)00233-9 -
Kyriacou, G. and Anagnostopoulos, A., "Electroreduction of
$CO_2$ on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences," J. Electroanal. Chem., 322(1-2), 233-246(1992). https://doi.org/10.1016/0022-0728(92)80079-J -
Hara, K., Tsuneto, A., Kudo, A. and Sakata, T., "Electrochemical Reduction of
$CO_2$ on a Cu Electrode under High Pressure Factors that Determine the Product Selectivity," J. Electrochem. Soc., 141(8), 2097-2103(1994). https://doi.org/10.1149/1.2055067 - Hori, Y., Murata, A. and Takahashi, R., "Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution," J. Chem. Soc. Faraday Trans. I, 85, 2309-2326(1989). https://doi.org/10.1039/f19898502309
- Cook, R. L., MacDuff, R. C. and Sammells, A. F., "On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper," J. Electrochem. Soc., 135(6), 1320-1326(1988). https://doi.org/10.1149/1.2095972
- Noda, H., Ikeda, S., Oda, Y., Imai, K., Maeda, M. and Ito, K., "Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution," Bull. Chem. Soc. Jpn., 63, 2459-2462(1990). https://doi.org/10.1246/bcsj.63.2459
- Bandi, A., "Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides," J. Electrochem. Soc., 137(7), 2157-2160(1990). https://doi.org/10.1149/1.2086903
-
Katoh, A., Uchida, H., Shibata, M. and Watanabe, M., "Design of Electrocatalyst for
$CO_2$ Reduction V. Effect of the Microcrystalline Structures of CuSn and CuZn Alloys on the Electrocatalysis of Reduction," J. Electrochem. Soc., 141(8), 2054-2058(1994). https://doi.org/10.1149/1.2055059 - Shibata, M., Yoshida, K. and Furuya, N., "Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies," J. Electrochem. Soc., 145(7), 2340-2348(1998). https://doi.org/10.1149/1.1838640
-
Park, J. H., Lee, S. I., Wee, J. H., Lim, J. H., Lee, J. K. and Chun, H. S., "A Study on Electrochemical Reduction of
$CO_2$ by using the Perovskite Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 36, 751-758(1998). - Kudo, T., Obayashi, H. and Yoshida, M., "Rare Earth Cobaltites as Oxygen Electrode Materials for Alkaline Solution," J. Electrochem. Soc., 124(3), 321-325(1977). https://doi.org/10.1149/1.2133297
-
Shimizu, Y., Uemura, K., Matsuda, H., Miura, N. and Yamazoe, N., "Bi-Functional Oxygen Electrode Using Large Surface Area
$La_{1-x}Ca_xCoO_3$ for Rechargeable Metal-Air Battery," J. Electrochem. Soc., 137(11), 3430-3433(1990). https://doi.org/10.1149/1.2086234 - Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195(1), 81-93(1985). https://doi.org/10.1016/0022-0728(85)80007-3
- Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," p16-38, Wiley & Sons, New York (1980).
- Tejuca, L. G. and Fierro, J. L. G., "Properties and Applications of Perovskite-Type Oxides," Marcel Dekker, New York(1993).
- Ponec, V. "Selectivity in Catalysis by Alloys," Catal. Rev., 11, 41-70(1975). https://doi.org/10.1080/01614947508079981
- Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195, 81-93(1985). https://doi.org/10.1016/0022-0728(85)80007-3
- Choi, C., Jung, Y., Kim, N., Pak, D., Chung, K., Kim, L. and Kwon, Y., "Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(5), 933-937(2012). https://doi.org/10.9713/kcer.2012.50.5.933