DOI QR코드

DOI QR Code

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M. (Department of Civil Engineering, Middle East College) ;
  • Basri, Noor Ezlin Ahmad (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia) ;
  • Irwan, Dani (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia) ;
  • Younes, Mohammad K. (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia)
  • Received : 2013.11.25
  • Accepted : 2014.02.25
  • Published : 2014.03.31

Abstract

Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

Keywords

References

  1. Abichou, T., Mahieu, K., Yuan, L., Chanton, J., Hater, G. (2009) Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Management 29, 1595-601. https://doi.org/10.1016/j.wasman.2008.11.007
  2. Abushammala, M.F.M., Basri, N.E.A., Basri, H., Kadhum, A.A.H., El-Shafie, A.H. (2012) Empirical gas emission and oxidation measurement at cover soil of dumping site: example from Malaysia. Monitoring and Assessment 185, 4919-4932.
  3. Abushammala, M.F.M., Basri, N.E.A., Elfithri, R. (2013a) Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate. Environmental Monitoring and Assessment 185, 9967-9978. https://doi.org/10.1007/s10661-013-3305-1
  4. Abushammala, M.F.M., Basri, N.E.A., Kadhum, A.A.H., Basri, H., El-Shafie, A.H., Sharifah Mastura, S.A. (2013b) Evaluation of methane generation rate and potential from selected landfills in Malaysia. International Journal of Environmental Science and Technology, in press. doi: 10.1007/s13762-013-0197-0.
  5. Adams, B.L., Besnard, F., Bogner, J., Hilger, H. (2011) Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Management 31, 1065-1073. https://doi.org/10.1016/j.wasman.2011.01.003
  6. Albanna, M., Fernandes, L., Warith, M. (2007) Methane oxidation in landfill cover soil; the combined effects of moisture content, nutrient addition, and cover thickness. Journal of Environmental Engineering Science 6, 191-200. https://doi.org/10.1139/s06-047
  7. Augenstein, D., Pacey, J. (1996) Landfill Gas Energy Utilization: Technology Options and Case Studies. United State Environmental Protection Agency, Office of Air and Radiation, pp. 1-4. EPA-600/R-92-116.
  8. Berger, J., Fornes, L.V., Ott, C., Jager, J., Wawra, B., Zanke, U. (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Management 25, 369-373. https://doi.org/10.1016/j.wasman.2005.02.005
  9. Boeckx, P., Cleemput, O.V., Villaralvo, I. (1996) Methane emission from a landfill and the methane oxidizing capacity of its covering soil. Soil Biology and Biochemistry 28, 1397-1405. https://doi.org/10.1016/S0038-0717(96)00147-2
  10. Boeckx, P., Cleemput, O.V., Villaralvo, I. (1997) Methane oxidation in soils with different textures and land use. Nutrient Cycling in Agroecosystems 49, 91-95. https://doi.org/10.1023/A:1009706324386
  11. Bogner, J., Spokas, K., Burton, E., Sweeney, R., Corona, V. (1995) Landfills as atmospheric methane sources and sinks. Chemosphere 31, 4119-4130. https://doi.org/10.1016/0045-6535(95)80012-A
  12. Bogner, J., Spokas, K., Chanton, J., Powelson, D., Fleiger, J., Abichou, T. (2005) Modeling landfill methane emissions from biocovers: a combined theoretical-empirical approach. In: Proceedings Sardinia '05 - Tenth International Waste Management and Landfill Symposium. CISA, Cagliari, Italy. 3-7 October 2005.
  13. Bogner, J.E. (1996) Rates of greenhouse gas emission at the Mallard Lake Landfill, Dupage country, Illinois-Major controls and implications for global methane budgets. Doctoral Thesis at the Northern Illinois University, Dekalb, Illinois 1996.
  14. Bogner, J.E., Chanton, J.P., Blake, D., Abichou, T., Powelson, D. (2010) Effectiveness of a Florida Landfill Biocover for Reduction of $CH_{4}$ and NMHC Emissions. Environmental Science and Technology 44, 1197-1203. https://doi.org/10.1021/es901796k
  15. Bogner, J.E., Spokas, K.A., Burton, E.A. (1997) Kinetics of Methane Oxidation in a Landfill Cover Soil: Temporal Variations, a Whole-Landfill Oxidation Experiment, and Modeling of Net $CH_{4}$ Emissions. Environmental Science and Technology 31(9), 2504-2514. https://doi.org/10.1021/es960909a
  16. Bohn, S., Jager, J. (2009) Micronial methane oxidation in landfill top covers-Process study on an MBT landfill. In: Proceedings Sardinia, Twelfth International Waste Management and Landfill Symposium. CISA, Cagliari, Italy. 5-9 October 2009.
  17. Borjesson, G., Chanton, J., Svensson, B.H. (2001) Methane oxidation in two Swedish Landfill covers measured with carbon-13 to carbon-12 isotope ratios. Journal of Environmental Quality 30, 369-376. https://doi.org/10.2134/jeq2001.302369x
  18. Borjesson, G., Sundh, I., Tunlid, A., Frostegard, A., Svensson, B.H. (1998) Microbial oxidation of $CH_{4}$ at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiology Ecology 26, 207-217. https://doi.org/10.1016/S0168-6496(98)00036-1
  19. Borjesson, G., Svensson, B.H. (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Management and Research 15, 33-54.
  20. Borken, W., Davidson, E.A., Savage, K., Sundquist, E.T., Steudler, P. (2006) Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biology and Biochemistry 38, 1388-1395. https://doi.org/10.1016/j.soilbio.2005.10.011
  21. Bosse, U., Frenzel, P., Conrad, R. (1993) Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiology Ecology 13, 123-134. https://doi.org/10.1111/j.1574-6941.1993.tb00058.x
  22. Castaldi, S., Fierro, A. (2005) Soil-atmosphere methane exchange in undisturbed and burned mediterranean shrubland of Southern Italy. Ecosystems 8, 182-190. https://doi.org/10.1007/s10021-004-0093-z
  23. Castro, M.S., Steudler, P.A., Melillo, J.M., Aber, J.D., Bowden, R.D. (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles 9, 1-10. https://doi.org/10.1029/94GB02651
  24. Christophersen, M., Kjeldsen, P., Holst, H., Chanton, J. (2001). Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation. Waste Management and Research 19, 595-612. https://doi.org/10.1177/0734242X0101900616
  25. Christophersen, M., Linderod, L., Jensen, P.E., Kjeldsen, P. (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. Journal of Environmental Quality 29, 1989-1997.
  26. CLEAR (2009) Consortium for Landfill Emissions Abatement Research. Proposal. International Working Group. http://ch4ox.lmem.us/clear.pdf (17 may 2010).
  27. De Visscher, A., Schippers, M., Cleemput, O.V. (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biology and Fertility of Soils 33, 231-237. https://doi.org/10.1007/s003740000313
  28. Einola, J.K., Kettunen, R.H., Rintala, J.A. (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biology and Biochemistry 39, 1156-1164. https://doi.org/10.1016/j.soilbio.2006.12.022
  29. Figueroa, R.A. (1996) Landfill gas treatment by biofilters. In: Christensen, T.H., Cossu, R. and Stegmann, R. (eds): Landfilling of Waste: Biogas, E and FN Spon, pp. 535-549.
  30. Gebert, J., Grongroft, A. (2006a) Passive landfill gas emission - Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Management 26, 245-251. https://doi.org/10.1016/j.wasman.2005.01.022
  31. Gebert, J., Grongroft, A. (2006b) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Management 26, 399-407. https://doi.org/10.1016/j.wasman.2005.11.007
  32. Gebert, J., Groengroeft, A. (2009) Role of Soil Gas Diffusivity for the Microbial Oxidation of Methane in Landfill Covers. In: Proceedings Sardinia 2009, Twelfth International Waste Management and Landfill Symposium. CISA, Cagliari, Italy. 5-9 October 2009.
  33. Hanson, R.S., Hanson, T.E. (1996). Methanotrophic Bacteria. Microbiological Reviews 60, 439-471.
  34. Henckel, T., Jackel, U., Conrad, R. (2001) Vertical distribution of the methanotrophic community after drainage of rice field soil. FEMS Microbiology Ecology 34, 279-291. https://doi.org/10.1111/j.1574-6941.2001.tb00778.x
  35. Hilger, H., Humer, M. (2003) Biotic landfill cover treatments for mitigating methane emissions. Environmental Monitoring and Assessment 84, 71-84. https://doi.org/10.1023/A:1022878830252
  36. Hilger, H., Oliver, J., Bogner, J., Jones, D. (2009) Reducing open sell landfill methane emissions with a bioactive alternative daily cover. Final Scientific Report, August 1, 2005-March 31, 2009. Department Of Environment (DOE): 2010. 84 p. Report No.: DE-FC26-05NT42433.
  37. Horz, H.P., Rich, V., Avrahami, S., Bohannan, B.J.M. (2005) Methane-oxidizing bacteria in a California upland grassland soil: Diversity and response to simulated global change. Applied and Environmental Microbiology 71, 2642-2652. https://doi.org/10.1128/AEM.71.5.2642-2652.2005
  38. Huber-Humer, M. (2004) International research into landfill gas emissions and mitigation strategies-IWWG working group "CLEAR". Waste Management 24, 425-427.
  39. Huber-Humer, M., Gebert, J., Hilger, H. (2008) Biotic systems to mitigate landfill methane emissions. Waste Management and Research 26, 33-46. https://doi.org/10.1177/0734242X07087977
  40. Huber-Humer, M., Roder, S., Lechner, P. (2009) Approaches to assess biocover performance on landfills. Waste Management 29, 2092-2104. https://doi.org/10.1016/j.wasman.2009.02.001
  41. Humer, M., Lechner, P. (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Management and Research 17, 443-452. https://doi.org/10.1177/0734242X9901700607
  42. Humer, M., Lechner, P. (2001) Design of a landfill cover layer to enhance methane oxidation results of a two year field investigation. In: Proceedings of "SARDINIA 2001 - Eighth International Waste Management and Landfill Symposium". Leachate and Landfill Gas, vol. II. CISA, Cagliari, pp. 541-550.
  43. Hutsch, B.W., Webster, C.P., Powlson, D.S. (1994) Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biology and Biochemistry 26, 1613-1622. https://doi.org/10.1016/0038-0717(94)90313-1
  44. IPCC (2007) Climate change 2007: the physical science basis, contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK), Cambridge University Press, 2007, 996 p. ISBN 978-0-521-88009-1.
  45. Jones, H.A., Nedwell, D.B. (2006) Methane emission and methane oxidation in land-fill cover soil. FEMS Microbiology Letters 102, 185-195.
  46. Jugnia, L-B., Cabral, A.R., Greer, C.W. (2008) Biotic methane oxidation within an instrumented experimental landfill cover. Ecological Engineering 33, 102-109. https://doi.org/10.1016/j.ecoleng.2008.02.003
  47. Keller, J.K., Bauers, A.K., Bridgham, S.D., Kellogg, L.E., Iversen, C.M. (2006) Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. Journal of Biophysical Research Biogeo-sciences 111, 1-14.
  48. Kettunen, R.H., Einola, J.M., Rintala, J.A. (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water, Air, and Soil Pollution 177, 313-334. https://doi.org/10.1007/s11270-006-9176-0
  49. Kightley, D., Nedwell, D.B., Cooper, M. (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Applied and Environmental Microbiology 61, 592-601.
  50. Knowles, R. (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecological Engineering 24, 441-446. https://doi.org/10.1016/j.ecoleng.2005.01.001
  51. Lee, S.-W. (2008) Microbial mitigation of greenhouse gas emissions from landfill cover soils. PhD dissertation, University of Michigan, USA.
  52. Lee, S.-W., Im, J., DiSpirito, A.A., Bodrossy, L., Barcelona, M.J., Semrau, J.D. (2009) Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Applied Microbiology and Biotechnology 85, 389-403. https://doi.org/10.1007/s00253-009-2238-7
  53. Maurice, C. Lagerkvist, A. (2003) LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation. Cold Regions Science and Technology 36, 37-46. https://doi.org/10.1016/S0165-232X(02)00094-0
  54. Mer, J.L., Roger, P. (2001) Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
  55. Mor, S., De Visscher, A., Ravindra, K., Dahiya, R.P., Chandra, A., Cleemput, O.V. (2006) Induction of enhanced methane oxidation in compost: Temperature and moisture response. Waste Management 26, 381-388. https://doi.org/10.1016/j.wasman.2005.11.005
  56. Mosier, A., Wassmann, R., Verchot, L., King, J., PALM, C. (2004) Methane and nitrogen oxide fluxes in tropical agricultural soils: Source, sinks and mechanisms. environment. Development and Sustainability 6, 11-49. https://doi.org/10.1023/B:ENVI.0000003627.43162.ae
  57. Park, J.-R., Moon, S., Ahn, Y.M., Kim, J.Y., Nam, K. (2005) Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environmental Technology 26, 93-102. https://doi.org/10.1080/09593332608618586
  58. Park, S., Brown, K.W., Thomas, J.C. (2002). The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Management and Research 20, 434-444. https://doi.org/10.1177/0734242X0202000507
  59. Pawlowska, M., Stepniewski, W. (2006) An influence of methane concentration on the methanotrophic activity of a model landfill cover. Ecological Engineering 26, 392-395. https://doi.org/10.1016/j.ecoleng.2005.12.003
  60. Qingxian, G., Wupeng, D., Shiqing, L., Zhigang, Z., Enchen, Z., Jianguo, W., Zhenhai, R. (2007) Methane emission from municipal solid waste treatments in China. Advances in Climate Change Research 3, 70-74.
  61. Reay, D.S., Nedwell, D.B. (2004) Methane oxidation in temperate soils: effects of inorganic N. Soil Biology and Biochemistry 36, 2059-2065. https://doi.org/10.1016/j.soilbio.2004.06.002
  62. Ritzkowski, M., Stegmann, R. (2007) Controlling greenhouse gas emissions through landfill in situ aeration. International Journal of Greenhouse Gas Control 1, 281-288. https://doi.org/10.1016/S1750-5836(07)00029-1
  63. Saari, A., Rinnan, R., Martikainen, P.J. (2004) Methane oxidation in boreal forest soils: kinetics and sensitivity to pH and ammonium. Soil Biology and Biochemistry 36, 1037-1046. https://doi.org/10.1016/j.soilbio.2004.01.018
  64. Scheutz, C., Bogner, J. (2003) Comparative oxidation and net emissions of $CH_{4}$ and selected non-methane organic compounds in landfill cover soils. Environmental Science and Technology 37:5143-5149. https://doi.org/10.1021/es026464+
  65. Scheutz, C., Kjeldsen, P. (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality 33, 72-79. https://doi.org/10.2134/jeq2004.7200
  66. Shangari, S.G., Agamuthu, P. (2012) Enhancing methane oxidation in landfill cover using brewery spent grain as Biocover. Malaysian Journal of Science 31, 91-97.
  67. Stern, J.C., Chanton, J., Abichou, T., Powelson, D., Yuan, L., Escoriza, S., Bogner, J. (2007) Use of biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management 27, 1248-1258. https://doi.org/10.1016/j.wasman.2006.07.018
  68. Streese, J., Stegmann, R. (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Management 23, 573-580. https://doi.org/10.1016/S0956-053X(03)00097-7
  69. Tanthachoon, N., Chiemchaisri, C., Chiemchaisri, W. (2007) Alternative Approach for Encouraging Methane Oxidation in Compost Based Landfill Cover Layer with Vegetation. In: Proceedings of the International Conference on Sustainable Solid Waste Management, 5-7 September, pp. 202-209. Chennai, India.
  70. Tecle, D., Lee, J., Hasan, S. (2008) Quantitative analysis of physical and geotechnical factors affecting methane emission in municipal solid waste landfill. Environmental Geology 56, 1135-1143.
  71. Visvanathan, C., Pokhrel, D., Cheimchaisri, W., Hettiaratchi, J.P.A., Wu, J.S. (1999) Methanotrophic activities in tropical landfill cover soils: effect of temperature, moisture content and methane concentration. Waste Management and Research 17, 313-323. https://doi.org/10.1177/0734242X9901700408
  72. Wang, Y., Wu, W., Ding, Y., Liu, W., Perera, A., Chen, Y., Devare, M. (2008) Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biology and Biochemistry 40, 2452-2459. https://doi.org/10.1016/j.soilbio.2008.06.009
  73. Wang, Z.-P., Ineson, P. (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biology and Biochemistry 35, 427-433. https://doi.org/10.1016/S0038-0717(02)00294-8
  74. Whittenbury, R., Phillips, K.C., Wilkinson, J.F. (1970) Enrichment, Isolation and Some Properties of Methaneutilizing Bacteria. Journal of General Microbiology 61, 205-218. https://doi.org/10.1099/00221287-61-2-205
  75. Willam, G.M., Zobell, C. (1949) The occurrence and characteristic of methane of oxidizing bacteria in marine sediments 58, 463-473.
  76. Wilshusen, J.H., Hettiaratchi, J.P.A., Visscher, A.D., Saint-Fort, R. (2004a) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environmental Pollution 129, 305-314. https://doi.org/10.1016/j.envpol.2003.10.015
  77. Wilshusen, J.H., Hettiaratchi, J.P.A., Stein, V.B. (2004b) Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management 24, 643-653. https://doi.org/10.1016/j.wasman.2003.12.006

Cited by

  1. ratios vol.20, pp.2, 2015, https://doi.org/10.4491/eer.2015.008
  2. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention vol.2016, pp.2090-9071, 2016, https://doi.org/10.1155/2016/3796352
  3. An assessment of the potential use of compost filled plastic void forming units to serve as vents on historic landfills and related sites pp.1614-7499, 2018, https://doi.org/10.1007/s11356-017-0208-7
  4. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review vol.36, pp.3, 2018, https://doi.org/10.1177/0734242X17753532
  5. biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea pp.1096-3669, 2018, https://doi.org/10.1177/0734242X18806996
  6. Environmental factors influencing landfill gas biofiltration: Lab scale study on methanotrophic bacteria growth vol.53, pp.9, 2018, https://doi.org/10.1080/10934529.2018.1455342
  7. Landfill Methane Oxidation: Predictive Model Development vol.15, pp.2, 2015, https://doi.org/10.3923/jas.2015.283.288
  8. Biodrying of municipal solid waste under different ventilation periods vol.21, pp.2, 2014, https://doi.org/10.4491/eer.2015.122
  9. 매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가 vol.45, pp.4, 2017, https://doi.org/10.4014/mbl.1708.08004
  10. Effect of temperature on methane oxidation and community composition in landfill cover soil vol.46, pp.9, 2014, https://doi.org/10.1007/s10295-019-02217-y
  11. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement vol.58, pp.1, 2014, https://doi.org/10.1029/2019rg000675
  12. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making vol.261, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110216
  13. Catalytic Performance of Calcium-Lanthanum co-doped Ceria (Ce0.85-xLa0.15CaxO2-δ) in Partial Oxidation of Methane vol.16, pp.3, 2014, https://doi.org/10.9767/bcrec.16.3.10528.548-554