• Title/Summary/Keyword: Methanotrophic bacteria

Search Result 12, Processing Time 0.021 seconds

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity (메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향)

  • Jeong, So-Yeon;Yoon, Hee-Young;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.

Purification and Characterization of a Methanol Dehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System

  • Kim, Hee-Gon;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.134-139
    • /
    • 2006
  • Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) from Methylomicrobium sp. HG-1, which belongs to the type I group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in an ${\alpha}_2{\beta}_2$ conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and $60^{\circ}C$, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.

Predicting Plasmid Replication Origin for Methane-converting Microbial Catalyst Improvement (메탄가스 전환 미생물촉매 개량을 위한 플라스미드 복제 시작점 예측)

  • Min-Sik Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.46-52
    • /
    • 2023
  • Methane is the second most emitted greenhouse gas after carbon dioxide. Despite lower emissions than those of carbon dioxide, methane receives significant attention owing to its more than 20-fold higher global warming potential. Consequently, the importance of research on methanotrophic bacteria, microorganisms capable of converting methane gas into high-value materials, is increasingly emphasized. In the case of methanotrophic bacteria, knowledge on episomal plasmids that can be used for genetic engineering remains lacking, which poses significant challenges to the engineering process. The replication origin sequences of natural plasmids within methanotrophic bacteria have been predicted through in silico methods. The basic characteristics of the replication origin, such as a high A/T ratio, repetitive sequences, and proximity to proteins related to replication, have been used as criteria for identifying the replication origin. As a result, a region with a sequence of 18 base pairs repeated eight times could be identified. The putative replication origin sequence thus identified generally takes the form of iterons, but it also possesses unique features such as the length of the gap between iterons and the repetition of identical iteron sequences. This information can be valuable for future design of episomal plasmids applicable to methanotrophs.

Biosorption of Cobalt by Methanotrophic Biomass (메탄자화균에 의한 코발트의 생물흡착)

  • Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2163-2173
    • /
    • 2000
  • The optimum pH range for biosorption of cobalt by methanotrophic bacteria was broadened to 6.0~12.0 which was compared to pH 10.5~11.5 of bios or bent-free control case. Removal efficiency of cobalt by methanotrophic biomass was pH dependent, but less sensitive than that of control. With 1.0 g biosorbent/L at initial solution pH 6.0. methanotrophic biomass took up cobalt from aqueous solutions to the extent of 170 mg/g biomass. As a result of scanning electron microscope(SEM) micrographs, cobalt removal by methanotrophic biomass seemed to be through adsorption on the surface of methanotrophic biomass and by exopolymer around the biomass. Optimum amount of methanotrophic biomass for maximum cobalt uptake was 1.0 g/L for initial 400 mg Co/L at initial pH 6.0. Removal efficiency of cobalt was slightly affected by ionic strength up to 2.0 M of NaCl and $NaNO_3$, respectively.

  • PDF

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M.;Basri, Noor Ezlin Ahmad;Irwan, Dani;Younes, Mohammad K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

Evaluation of Methane Oxidation and the Production Potential of Soils in an Urban School (도심 학교 토양의 메탄 산화 및 생성 잠재력 평가)

  • Lee, Yun-Yeong;Kim, Tae Gwan;Ryu, Hee Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.32-40
    • /
    • 2014
  • Methane oxidation and the production potentials of ground soil (soil A) and garden soil (soil B, C, & D) in an urban school were evaluated, and the methanotrophic and methanogen communities in the soil samples were quantified using quantitative realtime PCR. The methanotrophic community in the raw soil A sample possessed a $6.1{\times}10^3$ gene copy number/g dry weight soil, whereas those in the raw soils B~D samples were $1.6-1.9{\times}10^5$ gene copy numbers/g dry weight soil. Serum bottles added with the soil samples were enriched with methane gas, and then evaluated for their methane oxidation potential. The soil A sample had a longer induction phase for methane oxidation than the other soils. However, soil A showed a similar methane oxidation potential with soils B~D after the induction phase. The methanotrophic community in the enriched soil A sample was increased by up to $2.3{\times}10^7$ gene copy numbers/g dry weight soil, which had no significantly difference compared with those in soils B~D ($1.2-2.8{\times}10^8$ gene copy numbers/g dry weight soil). Methane production showed a similar tendency to methane oxidation. The methanogens community in raw soil A ($1.7{\times}10^5$ gene copy number/g dry weight soil) was much less than those in raw soils B~D ($1.3-3.4{\times}10^7$ gene copy numbers/g dry weight soil). However, after methane gas was produced by adding starch to the soils, soil samples A~D showed $10^7$ gene copy numbers/g dry weight soil in methanogens communities. The results indicate that methanotrophic and methanogenic bacteria have coexisted in this urban school's soils. Moreover, under appropriate conditions for methane oxidation and production, methanotrophic bacteria and methanogens are increased and they have the potential for methane oxidation and production.

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

Biotechnology for the Mitigation of Methane Emission from Landfills (매립지의 메탄 배출 저감을 위한 생물공학기술)

  • Cho, Kyung-Suk;Ryu, Hee-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.