DOI QR코드

DOI QR Code

A New α-Amylase from Reticulitermes speratus KMT1

  • Park, Han-Saem (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Ham, Youngseok (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Ahn, Hee-Hoon (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Shin, Keum (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • Received : 2013.12.27
  • Accepted : 2014.02.27
  • Published : 2014.03.25

Abstract

Termites are wood pests that cause vast economic damage every year. They digest both cellulose and starch, but the enzymes for starch digestion have not been well characterized. We obtained complete amino acid sequence information on the KME1 ${\alpha}$-amylase from Reticulitermes speratus KMT1 through analysis of total mRNA sequences. The KME1 enzyme has two ${\alpha}$-amylase domains and is 68% identical to the ${\alpha}$-amylase from Blattellager manica, its closest relative in the GenBank database. Some unique features of its conserved region and its distant evolutionary relationship to other insect ${\alpha}$-amylases suggest that KME1 is a new type of ${\alpha}$-amylase.

Keywords

References

  1. Cho, M.-J., Y.-H. Kim, K. Shin, Y.-K. Kim, Y.-S. Kim, and T.-J. Kim. 2010. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-$\beta$-1,4-glucanase activity. Biochem. Bioph. Res. Comm. 395: 432-435. https://doi.org/10.1016/j.bbrc.2010.04.048
  2. Cho, M. J., K. Shin, Y.-K. Kim, Y.-S. Kim, and T.-J. Kim. 2010. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. J. Korean Wood Sci. & Tech. 38: 135-139. https://doi.org/10.5658/WOOD.2010.38.2.135
  3. Franco, O. L., D. J. Rigden, F. R. Melo, and M. F. Grossi-de-Sa. 2002. Plant $\alpha$- amylase inhibitors and their interaction with insect $\alpha$-amylases. Eur. J. Biochem. 269: 397-412. https://doi.org/10.1046/j.0014-2956.2001.02656.x
  4. Janecek, S. 2002. How many conserved se quence regions are there in the $\alpha$-amylase family? Biologia 57: 29-41.
  5. Janecek, S. 1997. $\alpha$-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Bio. 67: 67-97. https://doi.org/10.1016/S0079-6107(97)00015-1
  6. Kanai, K., J. I. Azuma, and K. Nishimoto. 2008. Studies on digestive system of termites : I. Digestion of carbohydrates by termite Coptotermes formosanus Shiraki. Wood Res. 68: 47-57.
  7. MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the $\alpha$-amylase family of enzymes. BBA-Protein Struct. M. 1546: 1-20. https://doi.org/10.1016/S0167-4838(00)00302-2
  8. Marchler-Bauer, A., S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese- Scott, et al. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39: D225- D229. https://doi.org/10.1093/nar/gkq1189
  9. Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697-702. https://doi.org/10.1093/oxfordjournals.jbchem.a134659
  10. Nakajima, R., T. Imanaka, and S. Aiba. 1986. Comparison of amino acid sequences of eleven different $\alpha$-amylases. Appl. Microbiol. Biot. 23: 355-360.
  11. Nakashima, K., H. Watanabe, H. Saitoh, G. Tokuda, and J. I. Azuma. 2002. Dual cellulose- digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Molec. 32: 777-784. https://doi.org/10.1016/S0965-1748(01)00160-6
  12. Nater, U.M., and N. Rohleder. 2009. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology 34: 486-496. https://doi.org/10.1016/j.psyneuen.2009.01.014
  13. Saltzmann, K. D., K. A. Saltzmann, J. J. Neal, M. E. Scharf, and G. W. Bennett. 2006. Characterization of BGTG-1, a tergal gland-secreted alpha-amylase, from the German cockroach, Blattella germanica (L.). Insect Mol. Biol 15: 425-433. https://doi.org/10.1111/j.1365-2583.2006.00652.x
  14. Sharma, P., P. R. Shankar, G. Subramaniam, A. Kumar, A. Tandon, C. G. Suresh, et al. 2010. Cloning and sequence analysis of the amylase gene from the rice pest scirpophaga incertulas walker and its inhibitor from wheat (variety MP sehore). Int. J. Insect Sci. 1: 29-44.
  15. Svensson, B., M. Tovborg Jensen, H. Mori, K. Sass Bak-Jensen, B. Bønsager, P. K. Nielsen, et al. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57: 5-19.
  16. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596- 1599. https://doi.org/10.1093/molbev/msm092
  17. Watanabe, H., M. Nakamura, G. Tokuda, I. Yamaoka, A. M. Scrivener, and H. Noda. 1997. Site of secretion and properties of endogenous endo-$\beta$-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem. Mol. Biol. 27: 305-313. https://doi.org/10.1016/S0965-1748(97)00003-9
  18. Zhou, X., J. A. Smith, F. M. Oi, P. G. Koehler, G. W. Bennett, and M. E. Scharf. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395: 29-39. https://doi.org/10.1016/j.gene.2007.01.004