DOI QR코드

DOI QR Code

Relation between Thermal Emissivities and Alignment Degrees of Graphite Flakes Coated on an Aluminum Substrate

알루미늄 기판에 코팅된 흑연입자의 배향도 변화와 열방사율 변화의 관계

  • Kang, Dong Su (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang Min (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim, Suk Hwan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang Woo (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae Seung (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
  • 강동수 (금오공과대학교 신소재시스템공학부) ;
  • 이상민 (금오공과대학교 신소재시스템공학부) ;
  • 김석환 (금오공과대학교 신소재시스템공학부) ;
  • 이상우 (금오공과대학교 신소재시스템공학부) ;
  • 노재승 (금오공과대학교 신소재시스템공학부)
  • Received : 2014.03.03
  • Accepted : 2014.03.18
  • Published : 2014.03.27

Abstract

This study is research on the thermal emissivity depending on the alignment degrees of graphite flakes. Samples were manufactured by a slurry of natural graphite flakes with organic binder and subsequent dip-coating on an aluminum substrate. The alignment degrees were controlled by applying magnetic field strength (0, 1, and 3 kG) to the coated samples. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by an infrared thermal image camera at $100^{\circ}C$. The alignment degrees were 0.04, 0.11, and 0.17 and the applied magnetic field strengths were 0, 1, and 3 kG, respectively. The thermal emissivities were 0.829, 0.837, and 0.844 and the applying magnetic field strengths were 0, 1, and 3 kG, respectively. In this study the correlation coefficient, $R^2$, between thermal emissivity and alignment degree was 0.997. Therefore, it was concluded that the thermal emissivities are correlated with the alignment degree of the graphite flakes.

Keywords

References

  1. X. J. Hu, M. A. Panzer and K. E. Goodson, J. Heat Transfer, 129(1), 91 (2007). https://doi.org/10.1115/1.2401202
  2. S. P. Rawal, D. M. Barnett and D. E. Martin, Adv. Packaging, 22(3), 372 (1999). https://doi.org/10.1109/6040.784488
  3. A. Castellazzia, M. Honsberg-Riedlb and G. Wachutka, J. Microelectron., 37(2), 145 (2006). https://doi.org/10.1016/j.mejo.2005.02.123
  4. I.G Lee, S.W Lee, K.M Kang and S.Y Chang, Kor. J. Mater. Res., 14(12), 870 (2004). https://doi.org/10.3740/MRSK.2004.14.12.870
  5. S. C Lim, M. H Lee and K. M Kang, Kor. J. Mater. Res., 15(12), 829 (2005). https://doi.org/10.3740/MRSK.2005.15.12.829
  6. M. J. Shin, Phys. High Tech., 11, 11 (2008).
  7. S. M. Kim and S. M. Lee, (in Korean) J. KIEEME, 25(6), 431 (2012).
  8. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Katalin, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, Science, 305(5668), 1273 (2004). https://doi.org/10.1126/science.1101243
  9. Y. Zhou, M. I. Jeelani and S. Jeelani, Mater. Sci. Eng A, 506, 39 (2009). https://doi.org/10.1016/j.msea.2008.12.044
  10. Z. P. Luo and J. H. Koo, (in Korean) Mater. Lett., 62(20), 3493 (2008). https://doi.org/10.1016/j.matlet.2008.03.010
  11. H. J. Kim, H. K. Kim, Y. N. Kim, W. S. Lee, D. H. Yoon and W. S. Yang, JKCGCT, 23(5), 235 (2013).
  12. Y. H. Cho, KSCFE, 9(2), 36 (2004).
  13. Charls T. Lynch, Practical Handbook of Materials Science, CRC press, Florida 393, (1989).
  14. Bruce W. Ganser, Mod. Mater., 7, 165 (1970).
  15. W. L. Song, Nanotechnology, 24, 11 (2013).
  16. H, Wang, H. Zhang, W Zhao, W Zhang and G. Chen, Compos Sci. Technol., 68(1), 238 (2008). https://doi.org/10.1016/j.compscitech.2007.04.012
  17. J. S. Roh, (in Korean) Carbon Lett., 5(1), 27 (2004)
  18. T. J. W. van Thoor, L. W. Codd, K. Dijhoff, J. H. Fearon, C. J. van Oss, H. G. Roebersen and E. G. Stanford, Mater. Technol., 2, 424 (1971).