DOI QR코드

DOI QR Code

Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts

쇼키컨텍에 의한 박막형 트랜지스터의 전기적 특성

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2014.01.29
  • Accepted : 2014.03.11
  • Published : 2014.03.27

Abstract

To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.

Keywords

References

  1. S. W. Tsao, et al. Solid-State Electronics, 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  2. Teresa Oh, Kor. J. Mater. Res. 23(10), 580 (2013). https://doi.org/10.3740/MRSK.2013.23.10.580
  3. Chang, S. P. et al. Appl. Phys. Lett. 92, 192104 (2008). https://doi.org/10.1063/1.2924769
  4. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki1, Appl. Phys. Lett. 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  5. Nomura, K. et al. Appl. Phys. Lett. 93, 192107 (2008) https://doi.org/10.1063/1.3020714
  6. Q. Mao, Z. Ji and J. Xi, IOP J. Phys. D : Appl. Phys 43(39), 395104 (2010). https://doi.org/10.1088/0022-3727/43/39/395104
  7. Chang, S. P. et al. Appl. Phys. Lett. 92, 192104 (2008). https://doi.org/10.1063/1.2924769
  8. Wei-Tsung Chen, et al. IEEE Electron. Dev. Lett. 32, 1552 (2011). https://doi.org/10.1109/LED.2011.2165694
  9. Toshio Kamiy, T., Nomura, K. and Hosono, H. Technol. Adv. Mater. 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305
  10. Oleg Mitrofanov and Michael Mantra. J. Appl. Phys. 95, 6414 (2004). https://doi.org/10.1063/1.1719264
  11. J. Maserjian and N. Zamani, Appl. Phys. Lett. 53, 559 (1982).
  12. A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502. (2008). https://doi.org/10.1063/1.2824758
  13. S. D. Ganichev, et al. Phys. Rev B 61(15), 10361, (2000). https://doi.org/10.1103/PhysRevB.61.10361
  14. JOHN G. SIMMONS, Phys. Rev. 155, 657 (1967). https://doi.org/10.1103/PhysRev.155.657
  15. J. Maserjian, J. Vac. Sci. Technol. 11, 996 (1974). https://doi.org/10.1116/1.1318719
  16. Oh, T and Kim, C. H. IEEE Trans. Plasma Science, 38, 1598 (2010). https://doi.org/10.1109/TPS.2010.2049665
  17. Oh, T. Kim, K. S. Lee, K. M. and Choi, C. K. Jpn. J. Appl. Phys. 44, 1409, (2005). https://doi.org/10.1143/JJAP.44.1409