DOI QR코드

DOI QR Code

Study on the Wideband Tonpilz Transducer with a Cavity-Type Head Mass

중공형 전면추를 가진 Tonpilz 트랜스듀서 연구

  • 김현기 (경북대학교 기계공학과) ;
  • 임영섭 (경북대학교 센서 및 디스플레이공학과) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2014.01.21
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

In this work, we present an underwater acoustic transducer with a cavity-type head mass to achieve a wide frequency bandwidth. We analyzed the effects of design variables on the transducer characteristics, and optimized the structure of the Tonpilz transducer based on the analysis results. Further, validity of the design was verified by manufacturing a prototype of the transducer and measuring its properties. The designed transducer had a far wider -6 dB fractional bandwidth which is 131 % than that of a single mode transducer, and the measured results were confirmed to be in good agreement with the analysis results.

본 연구에서는 수중 음향 트랜스듀서의 주파수 광대역화를 위해서 중공형 전면추를 가진 Tonpilz 트랜스듀서를 제안하였다. 트랜스듀서의 특성에 미치는 설계변수들의 영향을 분석하고, 그 결과에 따라 Tonpilz 트랜스듀서의 최적구조를 설계하였다. 나아가 시편의 제작 및 특성 측정을 통하여 설계 결과의 타당성을 검증하였다. 설계된 트랜스듀서는 단일모드 트랜스듀서에 비해 월등히 넓은 131 %의 -6 dB 비대역폭을 나타내었으며, 해석 결과와 측정 결과가 잘 일치하는 것으로 확인되었다.

Keywords

References

  1. Q. Yao and L. Bjorno, "Broadband Tonpilz underwater acoustic transducers based on multimode optimization," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44, 1060-1066 (1997). https://doi.org/10.1109/58.655631
  2. W. S. Burdic, Underwater Acoustic System Analysis, (Prentice Hall, Englewood Cliffs, 1991), pp. 1-15.
  3. K. Zhang, D. Wang, P. Wang, and Y. Du, "Research on the broadband dual-excited underwater acoustic transducer," Advanced Engineering Forum, 2-3, 144-147 (2012).
  4. R. F. W. Coates, "The design of transducers and arrays for underwater data transmission," IEEE J. Oceanic Eng. 16, 123-135 (1991). https://doi.org/10.1109/48.64891
  5. J. L. Butler and A. L. Butler, U. S. Patent No. 8,072,843 Stepped Multiply Resonant Wideband Transducer Apparatus, 2011.
  6. G. C. Rodrigo, Analysis and design of piezoelectric sonar transducers (Ph. D. Thesis, London, 1970).
  7. S. C. Butler, "Triply resonant broadband transducers," Oceans '02 MTS/IEEE 4, 2334-2341 (2002).
  8. J. Kim, H. Kim, and Y. Roh, "Design and fabrication of multi-mode wideband Tonpilz transducers" (in Korea), J. Acoust. Soc. Kr. 32, 191-198 (2013). https://doi.org/10.7776/ASK.2013.32.3.191
  9. J. L. Butler, J. R. Cipolla, and W. D. Brown, "Radiating head flexure and its effect on transducer performance," J. Acoust. Soc. Am. 70, 500-503 (1981). https://doi.org/10.1121/1.386794
  10. S. Chhith and Y. Roh, "Wideband Tonpilz transducer with a cavity inside a head mass," Jpn. J. Appl. Phy. 49, 07HG08-1-07HG08-5 (2010).
  11. J. Kim, S. Pyo, and Y. Roh, "Derivation of single phase material properties equivalent to 1-3 piezoelectric composites by the resonant method" (in Korea), J. Acoust. Soc. Kr. 30, 368-376 (2011). https://doi.org/10.7776/ASK.2011.30.7.368
  12. Y. R. Roh and X. Lu, "Design of an underwater Tonpilz transducer with 2-2 mode piezocomposite materials," J. Acoust. Soc. Am. 119, 3734-3740 (2006). https://doi.org/10.1121/1.2197788
  13. S. H. Park, Design of Experiments (Minyoung Publishing Co., Seoul, 2012), pp. 255-278.