DOI QR코드

DOI QR Code

Change of Corneal Shape with Soft Contact Lens Type

소프트콘택트렌즈의 유형에 따른 각막형태의 변화

  • Woo, Chul-Min (Dept. of Optometry & Vision Science, Catholic University of Daegu) ;
  • Lee, Hyun Mee (Dept. of Optometry & Vision Science, Catholic University of Daegu)
  • 우철민 (대구가톨릭대학교 안경광학과) ;
  • 이현미 (대구가톨릭대학교 안경광학과)
  • Received : 2014.01.31
  • Accepted : 2014.03.15
  • Published : 2014.03.31

Abstract

Purpose: This study was to investigate changes in the thickness of cornea, curvature of cornea, and aberration depending on the water contents, materials, and refractive power of contact lens. Methods: The differences in the corneal thickness between pre- and post-wearing the lenses were compared using 5 kinds of lenses. The changes in the corneal thickness, the curvatures of the anterior and posterior cornea, and high order aberration (HOA) before and after wearing the lenses were investigated at the center of the cornea, and the different distance and the direction away from the center of the cornea. For the equipments of measurement, ORB ScanII (Bausch & Lomb Inc, ver 3.14) was used to measure the corneal topography and thickness, and Zywave (Bausch & Lomb Inc, ver 5.20) was used to analyze the high order aberration. Results: Five (S1, S2, S3, T1, T2) of the lens was used for this study, excluding the lens T2 lens has four lenses and the thickness of the corneal shape, but the impact is minimal. In the case of the hydrogel soft contact lenses (T2 lens) with low oxygen permeability, the corneal thickness showed distinct increasing patterns. The high order aberration and coma aberration were most changed in the silicon hydrogel toric lens, while the depth of anterior was most changed in the hydrogel toric lens. Conclusion: Among the 5 kinds of contact lenses with different water contents, materials, and refractive power used for this study, the corneal shape change was small for the lenses with an oxygen permeability (Dk) of more than 28, and the largest for the lenses with a very low oxygen permeability.

목적: 콘택트렌즈의 함수율, 재질, 굴절력의 차이에 따른 착용전후의 각막의 형태 변화를 살펴보고자 하였다. 방법: 5가지 유형의 콘택트렌즈를 사용하여 렌즈 착용 전후의 두께차이를 비교하였다. 각막의 중심부와 각막 중심에 떨어진 거리와 방향에 따른 렌즈 착용 전, 후의 각막의 두께, 각막 전, 후면 곡률, 고위수차의 변화를 조사하였다. 측정에 사용된 장비로는 ORB ScanII(Bausch & Lomb Inc, ver 3.14)로 각막 지형도 및 각막 두께를 측정하였으며, 고위수차(high order aberration) 분석을 위하여 Zywave(Bausch & Lomb Inc, ver 5.20)를 사용 하였다. 결과: 산소투과가 낮은 하이드로겔 재질의 소프트 콘택트렌즈(T2 lens)에서 각막의 두께가 증가하는 경향이 두드러지게 나타났다. 각막 중심에서 가장 많은 변화를 보였으며, 중심에 가까울수록 변화정도가 증가하였다. 각막의 방향에 있어서는 코 쪽이 가장 많이 변하였다. 결론: 본 연구에서 사용한 함수율, 재질, 디자인이 다른 5종의 콘택트렌즈 중 Dk가 28이상의 산소투과도를 가진 렌즈에서는 각막의 형태 변화가 적었으며, 산소투과도가 매우 낮은 렌즈에서 가장 많은 각막형태의 변화가 나타났다.

Keywords

References

  1. Park SH, Kim SR, Park MJ. The effect of circle lens and soft contact lens with identical material in clinical application on the eyes. J Korean Oph Opt Soc. 2011;6(2):147-157.
  2. Kwak CH, Park MY, Tchah HW. Experimental 24 Hour Corneal Swelling by Extended Wear Contact Lenses. J Korean Ophthalmol Soc. 1991;32(2):149-153.
  3. Lee DK, Choi SK, Song KY. Clinical Survey of Corneal Complications Associated with Contact Lens Wear. J Korean Ophthalmol Soc. 1994;35(8):895-901.
  4. Foulks GN. What is Dry Eye and What Does it Mean to the Contact Lens Wearer?. Eye Contact Lens. 2003;29(1):S96-100. https://doi.org/10.1097/01.ICL.0000060998.20142.8D
  5. Lee KJ, Buyn JW, Mun MY, Leem HS. The Relationship between Habitual Patient-Reported Symptoms and Signs in the Soft Contact Lens Wearers. J Korean Oph Opt Soc. 2008;13(3):19-28.
  6. Polse KA. Tear Flow under Hydrogel Contact Lenses. Invest Ophthalmol Vis Sci. 1979;18(4):403-413.
  7. Smelser GK, Chen DK. Physiological Changes in Cornea Induced by Contact Lenses. AMA Arch Ophthalmol. 1955;53(5):676-679. https://doi.org/10.1001/archopht.1955.00930010684009
  8. Bruce A, Brennan N, Lindsay R. Diagnosis and Management of Ocular Changes During Contact Lens Wear, Part 1. Ciln Signs Ophthalmol. 1995;16(4):2-11.
  9. Holden BA, Mertz GW. Critical Oxygen Levels to Avoid Corneal Edema for Daily and Extended Wear Contact Lenses. Invest Ophthalmol Vis Sci. 1984;25(10):1161-1167.
  10. Harvitt DM, Bonanno JA. Re-Evaluation of the Oxygen Diffusion Model for Predicting Minimum Contact Lens Dk/T Values Needed to Avoid corneal Anoxia. Optom Vis Sci. 1999;76(10):712-719. https://doi.org/10.1097/00006324-199910000-00023
  11. Efron N. Re-Thinking Extended Contact Lens Wear. Ophthalmic physiol Opt. 1998;18(3):241-242. https://doi.org/10.1016/S0275-5408(98)00017-9
  12. Shin YJ, Moon JW, Wee WR. Corneal Neovascularization and Corneal Hypesthesia as Contact Lens Complications. J Korean Ophthalmol Soc. 2006;47(1):25-30.
  13. Larke JR, Humphreys JA, Holmes R. Apparent Corneal neovascularization in soft lens weares. J Br Contact Lens Assoc. 1981;4(3):105-106. https://doi.org/10.1016/S0141-7037(81)80029-8
  14. Majeti NV, Ravi Kumar. A review of chitin and chitosan applications. Reactive & Functional Polymers. 2000;46(1):1-27 https://doi.org/10.1016/S1381-5148(00)00038-9
  15. Read SA, Collins MJ. Diurnal Variation of Corneal Shape and Thickness. Optom Vis Sci. 2009;86(3):170-180. https://doi.org/10.1097/OPX.0b013e3181981b7e
  16. Wang J, Fonn D, Simpson TL. Topographical thickness of the Epithelium and Total Cornea after Hydrogel and Pmma Contact Lens Wear with Eye Closure. Invest Ophthalmol Vis Sci. 2003;44(3):1070-1074. https://doi.org/10.1167/iovs.02-0343
  17. Ehlers N, Hansen FK. Further data on biometric correlations of central corneal thickness. Acta Ophthalmol Scand. 1976;54:774-778.
  18. Sarver MD, Polse KA, Baggett DA. Intersubject difference in corneal edema response to hypoxia. Am J Optom Physiol Opt. 1983;60(2):128-131. https://doi.org/10.1097/00006324-198302000-00006
  19. Efron N. Intersubject variability in corneal swelling response to hypoxia. Acta Ophthalmol. 1986;64(3):302-305.
  20. Fatt I. Steady-State Distribution of Oxygen and Carbon Dioxide in the in Vivo Cornea. The Open Eye in Nitrogen and the Covered Eye Exp Eye Res. 1968;7(3):413-430.
  21. Liesgang TJ. Physiologic changes of the Cornea with Contact Lens Wear. CLAO j. 2002;28(1):12-27.
  22. Lu F, Mao X, Qu J, Xu D, He JC. Monochromatic Wavefront Aberrations in the human Eye with Contact Lenses. Optom Vis Sci. 2003;80(2):135-141. https://doi.org/10.1097/00006324-200302000-00009
  23. Brennan NA, Efron N, Carney LG. Critical Oxygen Requirements to Avoid Oedema of the Central and Periph eral Cornea. Acta Ophthalmol (Copenh). 1987;65(5):556-564.
  24. Polse KA, Rivera RK, Bonanno J Ocular effects of hard gaspermeable-lens extended wear. Am J Optom Phusiol Opt. 1988;65(5):358-364. https://doi.org/10.1097/00006324-198805000-00009
  25. Kim JM, Mun MY, Kim YC, Lee KJ. Change of Spherical Aberration with Aspheric Soft Contact Lens Wear. J Korean Oph Opt Soc. 2012;17(4):365-372.

Cited by

  1. Physical Properties of the Hydrogel Using Alginate vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.463
  2. The Effect of Non-compliant Use of an Eyewash Solution on Lens Parameters and Pigmentation of Circle Soft Contact Lenses vol.23, pp.4, 2018, https://doi.org/10.14479/jkoos.2018.23.4.365
  3. Comparison of NIBUT and High Order Aberration between Two Different Contact Lens Materials vol.24, pp.4, 2014, https://doi.org/10.14479/jkoos.2019.24.4.381
  4. The pH-induced Change in Oxygen Transmissibility of Clear and Circle Soft Contact Lenses vol.25, pp.4, 2014, https://doi.org/10.14479/jkoos.2020.25.4.371