DOI QR코드

DOI QR Code

The Correlation between Critical Micelle Concentration/Surface of Contact Lens Care Solutions Tension and Their Cleaning Efficacy

콘택트렌즈 관리용액의 미셀임계농도 및 표면장력과 세척력 간의 상관관계

  • Byun, Hyun Young (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Sung, Hyung Kyung (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Moon, Joon Sik (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Lee, A Young (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Kwon, Se Young (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science & Technology) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science & Technology)
  • 변현영 (서울과학기술대학교 안경광학과) ;
  • 성형경 (서울과학기술대학교 안경광학과) ;
  • 문준식 (서울과학기술대학교 안경광학과) ;
  • 이아영 (서울과학기술대학교 안경광학과) ;
  • 권세영 (서울과학기술대학교 안경광학과) ;
  • 김소라 (서울과학기술대학교 안경광학과) ;
  • 박미정 (서울과학기술대학교 안경광학과)
  • Received : 2014.01.03
  • Accepted : 2014.03.15
  • Published : 2014.03.31

Abstract

Purpose: The present study was aimed to figure out the correlation amongst the evaluation methods for critical micelle concentration, surface tension and protein cleaning efficacy to evaluate cleaning efficacy of contact lens care products. Methods: The critical micelle concentration of surfactants and the actual concentration of surfactants in contact lens care solutions were investigated by employing references published and related information. Surface tension of contact lens care solutions was measured by surface tension device at $25{\pm}1^{\circ}C$, and contact lenses made of lotrafilcon A, comfilcon A and balafilcon A were washed with contact lens care solutions after the incubation in artificial tears for 14 days and their cleaning efficacy was compared. Results: Among the 22 contact lens care products, 9 products provided the label of the concentration of surfactant, and 7 products showed higher concentration of surfactant than the critical micelle concentration reported in references. As a result of measuring surface tension, the surface tension of lens care products for soft contact lens was generally lower than other care products. When examined the removal effect of protein deposited on lens surface, it was known that the care products having lower surface tension showed higher protein removal efficiency. Conclusions: The surface tension is low when surfactant concentration in contact lens care solutions is high, and the removal effect of protein deposited is accordingly increased with the decrease of surface tension. Thus, these indicate the correlation amongst the evaluation methods for cleaning efficacy.

목적: 본 연구에서는 콘택트렌즈 관리용품의 세척력 평가를 위해 미셀임계농도 평가법, 표면장력 평가법 및 단백질세척효율평가법의 상관관계에 대해 알아보고자 하였다. 방법: 계면활성제의 미셀임계농도와 실제 콘택트렌즈 관리용액의 계면활성제 농도를 문헌과 관련 자료들을 이용하여 조사하였다. 표면장력기기로 $25{\pm}1^{\circ}C$에서 콘택트렌즈 관리용액의 표면장력을 측정하였으며, lotrafilcon A, comfilcon A, balafilcon A재질의 렌즈를 인공누액에 14일 동안 침착시킨 후 콘택트렌즈 관리용액으로 세척하여 세척효율을 비교하였다. 결과: 콘택트렌즈 관리용품 22제품 중 계면활성제 농도가 표시된 제품은 9제품이었으며 문헌상의 미셀임계농도보다 계면활성제 농도가 더 높은 제품은 7제품이었다. 표면장력을 측정한 결과 대체적으로 소프트렌즈용 관리용품의 표면장력이 다른 관리용품보다 낮음을 알 수 있었으며, 렌즈에 침착된 단백질 제거효과 분석 결과에서는 표면장력이 더 낮은 제품의 단백질 제거효율이 더 높은 것을 알 수 있었다. 결론: 콘택트렌즈 관리용액의 계면활성제 농도가 높은 경우 표면장력이 낮으며, 표면장력이 낮을수록 침착된 단백질 세척 효율이 높아져 세척력 평가법 간에 서로 상관관계가 있음을 밝혔다.

Keywords

References

  1. Kim SB, Kim YC. Thermodynamic approach on the critical micelle concentration of surfactant. J Korean Oil Chem Soc. 2011;8(4):449-454.
  2. FDA: Guidance for Industry-Premarket notification(510(k)) guidance document for contact lens care products, Food and Drug Administration, United States of America, 1997.
  3. Ryu GC, Park HJ, Kim JM, Lee JB. Comparison of protein removal effects and cytotoxicity in the L-929 cell line by tyloxapol and tromethamine. Korean J Vis Sci. 2001;3(1):61-68.
  4. Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF. Silicone hydrogel contact lenses and the ocular surface. Ocul Surf. 2006;4(1):24-43. https://doi.org/10.1016/S1542-0124(12)70262-8
  5. Boone A, Heynen M, Joyce E, Varikooty J, Jones L. Ex vivo protein deposition on bi-weekly silicone hydrogel contact lenses. Optom Vis Sci. 2009;86(11):1241-1249. https://doi.org/10.1097/OPX.0b013e3181bbc1b3
  6. Read ML, Morgan PB, Kelly JM, Maldonado Codina C. Dynamic contact angle analysis of silicone hydrogel contact lenses. J Biomater Appl. 2011;26(1):85-99. https://doi.org/10.1177/0885328210363505
  7. Subbaraman LN, Glasier MA, Senchyna M, Sheardown H, Jones L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr Eye Res. 2006;31(10):787-796. https://doi.org/10.1080/02713680600888799
  8. G Anorasko, K Ryen. A series of evaluations of mps and silicone hydrogel lens combinations. Rev Cornea Contact Lenses. 2007:36-42.
  9. Alvarez-Lorenzo C, Sosnik A, Concheiro A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr Drug Targets. 2011;12(8):1112-1130. https://doi.org/10.2174/138945011795906615
  10. SIGMA-ALDRICH. T8761 Sigma Tyloxapol nonionic surfactant, http://www.sigmaaldrich.com/catalog/product/sigma/t8761?lang=ko®ion=KR(19 November 2013).
  11. Thermo SCIENTIFIC. Tween 80 Detergent Solution, http://www.piercenet.com/product/tween-80-detergent-solution (19 November 2013).
  12. Thermo SCIENTIFIC. Tween 20 Detergent Solution, http://www.piercenet.com/product/tween-20-detergent-solution (19 November 2013).
  13. Kim SR. Science of the cleaner and cleaning. 3rd Ed. Kyungki: Kyomoonsa. 2013;23-41.
  14. Kabanov AV, Batrakova EV, Alakhov VY. $Pluronic^{(A)}$block$ copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2-3):189-212. https://doi.org/10.1016/S0168-3659(02)00009-3
  15. Jacobs C, Kayser O, Muller RH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196(2):161-164. https://doi.org/10.1016/S0378-5173(99)00412-3
  16. Alvarez-Lorenzo C, Gonzalez-Lopez J, Fernandez-Tarrio M, Sandez-Macho I, Concheiro A. Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. Eur J Pharm Biopharm. 2007;66(2):244-252. https://doi.org/10.1016/j.ejpb.2006.10.010
  17. Kook YH, Lee JM, Cho SC, Yeo SD. Colloid&Surfactant. 2nd Ed. Seoul: Daekwangseorim. 2013;164-318.
  18. Lee CS, Hong GW. A study on the anion-paint method on sick house syndrome. Korean J Odor Res Eng. 2012;11(2):80-86.
  19. Kang YS, Lee KJ. Evaluation of lipids adsorbed on silicone hydrogel contact lenses using high performance lipid chromatography analytical method. Korean J Vis Sci. 2010;12(2):127-138.
  20. Lee KN, Shin HS, Andre B, Jeon IC, Mah KC. Effect of surface plasma treatment on physicochemical characteristics of rigid gas permeable contact lens. Korean J Vis Sci. 2013;15(2):189-200.
  21. Zhao Z, Carnt NA, Aliwarga Y, Wei X, Naduvilath T, Garrett Q et al. Care regimen and lens material influence on silicone hydrogel contact lens deposition. Optom Vis Sci. 2009;86(3):251-259. https://doi.org/10.1097/OPX.0b013e318196a74b

Cited by

  1. The Deposition of Tear Protein according to Soft Lens Materials and The Cleaning Efficacy of Multi-purpose Solution according to the Surfactant Types vol.19, pp.2, 2014, https://doi.org/10.14479/jkoos.2014.19.2.179
  2. Correlation between Tear Volume and Tear Film Stability and Protein Amount Deposited on Soft Contact Lenses in Dry Eyes vol.24, pp.1, 2019, https://doi.org/10.14479/jkoos.2019.24.1.11