DOI QR코드

DOI QR Code

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature

온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화

  • Noh, Hyeran (Dept. of Optometry, Seoul National University of Science & Technology)
  • 노혜란 (서울과학기술대학교 안경광학과)
  • Received : 2013.10.25
  • Accepted : 2014.03.15
  • Published : 2014.03.31

Abstract

Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

목적: 플라스틱 렌즈의 온도에 의한 영향을 조사하고자 열 충격을 주어 렌즈 재질과 코팅의 변화를 살펴보았다. 방법: 본 연구에서는 굴절률이 다른 3 가지의 렌즈(2 종류의 thiourethane계열 렌즈, 한 종류의 allyl diglycol carbonate, ADC 렌즈)를 5 시간 동안 고온(50, 80, 그리고 $100^{\circ}C$)에 노출시켰을 때 각각의 코팅(반사방지코팅, 하드 코팅, 그리고 수막방지코팅)의 변화를 측정하였다. 결과: 그 결과 고굴절률 렌즈들에서는 경도의 변화가 미미하였으나 중굴절률 렌즈는 고온의 열에 노출될수록 경도가 점차 감소하여 하드코팅이 손상됨을 확인하였다. 모든 렌즈의 광투과율이 $80^{\circ}C$ 이상의 열 충격 시 큰 감소가 나타나 멀티코팅 층이 파괴됨을 유추할 수 있었다. 렌즈에 열 충격이 가해질수록 표면 접촉각이 작아져 $80^{\circ}C$ 이상 가열 시 수막발수코팅이 손상되기 시작함을 보였다. 결론: 굴절률이 다른 3가지 렌즈 모두에서 $80^{\circ}C$ 이상의 열 충격을 받았을 때 발수코팅을 포함한 멀티코팅이 손상되었고 고분자 재료 소재에 따라 기계적, 물리적 특성 변화정도가 다르게 나타났다.

Keywords

References

  1. Gallup Korea, Korea Optometry Association press release. Eyeglass and contact lens consumption rate in Korea, 2013.
  2. Krogman K, Druffel T, Sunkara K. Anti-reflective optical coatings incorporating nanoparticles. Nanotech. 2005;16(7):S338-S343. https://doi.org/10.1088/0957-4484/16/7/005
  3. Yu DS, Moon BY, Ha JW. A comparative study on test methods for ophthalmic lens coatings. J Korean Oph Opt Soc. 2006;11(1):7-15.
  4. Cho HG, Moon BY. Study on changes of ophthalmic plastic lens due to heating. J Korean Oph Opt Soc. 2011;16(3):247-253.
  5. Moon BY, Hwang KJ, Lee YJ, Yu DS. Changes of the plastic lens properties caused by etching of the coating films. J Korean Oph Opt Soc. 2010;15(1):55-60.
  6. Schulz, U. Review of modern techniques to generate antireflective properties on thermoplastic polymers. Applied Optics. 2006;45(7):1608-1618. https://doi.org/10.1364/AO.45.001608
  7. Kuhr M, Bauer S, Rothhaar U, Wolff D. Coatings on plastics with the PICVD technology Thin Solid Films. 2003;442(1-2):107-116. https://doi.org/10.1016/S0040-6090(03)00956-8
  8. Wang, Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding. Polym Advan Technol. 2005;16(4):344-351. https://doi.org/10.1002/pat.589
  9. Lee J, Noh H. Comparison of properties of polymer based glass lenses by chemical etching reaction. J Korean Oph Opt Soc. 2012;17(2):119-126.
  10. Samson F. Ophthalmic lens coatings. Surf Coat Tech. 1996;81(1):79-86. https://doi.org/10.1016/0257-8972(95)02532-4
  11. Nakayama M, Hayashi T. Synthesis of novel UV-curable difunctional thiourethane methacrylate and studies on organic-inorganic nanocomposite hard coatings for high refractive index plastic lenses. Prog Org Coat. 2008;62(3):274-284. https://doi.org/10.1016/j.porgcoat.2008.01.002
  12. Schmauder T, Nauenburg K, Kruse K, Ickes G. Hard coatings by plasma CVD on polycarbonate for automotive and optical applications, Thin Solid Films. 2006;502(1-2):270-274. https://doi.org/10.1016/j.tsf.2005.07.296
  13. Keeney A, Duerson H. Evaluation of plastic spectacle lenses. Arch Ophthalmol. 1953;49(5):530-535. https://doi.org/10.1001/archopht.1953.00920020542004
  14. Yalon M, Goldberg EP, Osborn D, Stacholy J, Sheets JW. Polycarbonate intraocular lenses J Cataract Refr Surg. 1988;14(4):393-395. https://doi.org/10.1016/S0886-3350(88)80145-7
  15. Nagai D, Sato M, Ochiai B, Endo T. Synthesis and properties of the polythiourethanes obtained by the cationic ring-opening polymerization of cyclic thiourethanes. J Polym Sci Pol Chem. 2006;44(16):4795-4803. https://doi.org/10.1002/pola.21557
  16. Noh H, Vogler EA. Volumetric interpretation of protein adsorption: Competition from mixtures and the Vroman effect. Biomaterials, 2007;28(3):405-422. https://doi.org/10.1016/j.biomaterials.2006.09.006

Cited by

  1. A Comparative Study on the Local Transmittance Homogeneity of the Ocular Lens vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.471
  2. The Changes in Surface and Composition Ratio of Coating Films on Colored Spectacle Lenses by Thermal Stress vol.23, pp.2, 2018, https://doi.org/10.14479/jkoos.2018.23.2.73
  3. Characteristic Change of Coating Films on Tinted Spectacle Lenses by Thermal Stress vol.23, pp.4, 2018, https://doi.org/10.14479/jkoos.2018.23.4.467
  4. 안경 렌즈의 국소적 투과율 측정을 위한 방법에 관한 연구 vol.19, pp.4, 2014, https://doi.org/10.14479/jkoos.2014.19.4.471
  5. 일상생활 속 안경렌즈 흠집에 의한 교체주기 분석 vol.10, pp.12, 2014, https://doi.org/10.15207/jkcs.2019.10.12.447
  6. Analysis on Transmittance by Material according to the Use Period of Spectacle Lens vol.22, pp.1, 2014, https://doi.org/10.17337/jmbi.2020.22.1.11