DOI QR코드

DOI QR Code

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca (Department of Civil and Environmental Engineering) ;
  • Gkoumas, Konstantinos (Department of Structural and Geotechnical Engineering, Sapienza University of Rome) ;
  • Bontempi, Franco (Department of Structural and Geotechnical Engineering, Sapienza University of Rome)
  • Received : 2013.01.01
  • Accepted : 2013.11.11
  • Published : 2014.03.28

Abstract

Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

Keywords

References

  1. Adeli, H. and Kumar, S. (1995), "Concurrent structural optimization on a massively parallel supercomputer", J. Struct. Eng.- ASCE, 121(11), 1588-1597. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1588)
  2. Adeli, H. and Park, H.S. (1995), "Optimization of space structures by neural dynamics", Neural Networks, 8(5), 769-781. https://doi.org/10.1016/0893-6080(95)00026-V
  3. Adeli, H. and Samant, A. (2000), "An adaptive conjugate gradient neural network-wavelet model for traffic incident detection", Comput-Aided Civ. Inf., 15(4), 251-260. https://doi.org/10.1111/0885-9507.00189
  4. Al-Bazi, A. and Dawood, N. (2010), "Developing crew allocation system for precast industry using genetic algorithms", Comput-Aided Civ. Inf., 25(8), 581-595. https://doi.org/10.1111/j.1467-8667.2010.00666.x
  5. Amir, O. (2013), "A topology optimization procedure for reinforced concrete structures", Comput. Struct., 114-115, 46-58. https://doi.org/10.1016/j.compstruc.2012.10.011
  6. Arangio, S. and Beck, J.L. (2011), "Bayesian neural networks for bridge integrity assessment", Struct. Control Hlth., 19(1), 3-21.
  7. Arangio, S. and Bontempi, F. (2010), "Soft computing based multilevel strategy for bridge integrity monitoring", Comput-Aided Civ. Inf., 25(5), 348-362. https://doi.org/10.1111/j.1467-8667.2009.00644.x
  8. Araujo, C.A.M., Loriggio, D.D. and Da Camara, J.M.N.N. (2011), "Anchorage failure and shear design of hollow-core slabs", Struct. Concrete, 12(2), 109-119. https://doi.org/10.1002/suco.201000024
  9. Baitsch, M. and Hartmann, D. (2006), Optimization of slender structures considering geometrical imperfections, Inverse Probl. Sci. Eng., 14(6), 623-637. https://doi.org/10.1080/17415970600573494
  10. BelHadj, A.N., Rhode-Barbarigos, L., PascualAlbi, A.A. and Smith, I.F.C. (2010), "Design optimization and dynamic analysis of a tensegrity-based footbridge", Eng. Struct., 30(11), 3650-3659.
  11. Benitez, J. M. and Galvez, J.C. (2011), "Bond modelling of prestressed concrete during the prestressing force release", Mater. Struct., 44(1), 263-278. https://doi.org/10.1617/s11527-010-9625-5
  12. Biondini, F., Bontempi, F. and Malerba, P.G. (2004a), Fuzzy reliability analysis of concrete structures, Comput.Struct., 82(13-14), 1033-1052. https://doi.org/10.1016/j.compstruc.2004.03.011
  13. Biondini, F., Bontempi, F., Frangopol, D.M. and Malerba P.G. (2004b), "Reliability of material and geometrically non-linear reinforced and prestressed structures", Comput. Struct., 82(13-14), 1021-1031. https://doi.org/10.1016/j.compstruc.2004.03.010
  14. Bocchini, P. and Frangopol, D.M. (2011), "A probabilistic computational framework for bridge network optimal maintenance scheduling", Reliab. Eng. Syst. Safe., 96(2), 332-349. https://doi.org/10.1016/j.ress.2010.09.001
  15. Bogomolny, M. and Amir, O. (2012), "Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling", Int. J. Numer.Meth. Eng., 90(13), 1578-1597. https://doi.org/10.1002/nme.4253
  16. Bontempi, F., Biondini, F. and Malerba, P.G. (2000), "The search for structural schemes by using optimality criteria and soft computing techniques", Proceedings of Structural Morphology Conference, August 17-19, Delft, The Netherlands.
  17. Bontempi, F., Gkoumas, K. and Arangio, S. (2008), "Systemic approach for the maintenance of complex structural systems", Struct. Infrastruct. E., 4(2), 77-94. https://doi.org/10.1080/15732470601155235
  18. Bontempi, F. and Malerba, P.G. (1997), "The role of softening in the numerical analysis of R.C. framed structures", Struct. Eng. Mech., 5(6), 785-801. https://doi.org/10.12989/sem.1997.5.6.785
  19. Boto-Giralda, D., Diaz-Pernas, F.J, Gonzalez-Ortega, D., Diez-Higuera, J.F., Anton-Rodriguez, M. and Martinez-Zarzuela, M. (2010), "Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks", Comput-Aided Civ. Inf., 25(7), 530-545 https://doi.org/10.1111/j.1467-8667.2010.00668.x
  20. Buettner, D.R. and Becker, R.J. (1998), Manual for the Design of Hollow Core Slabs, (2nd Edition), Precast/Prestressed Concrete Institute, Chicago, IL.
  21. Capuano, G., Della Bella, B., Della Bella, G., Ghittoni, P., Morandi, P. and Nilson, C. (2002), The hollow core floor. Design and applications, (1st edition), Manual ASSAP, Verona. Italy.
  22. Ceravolo, R., De Stefano, A. and Sabia, D. (1995), "Hierarchical use of neural techniques in structural damage recognition", Smart Mater. Struct, 4(4), 270-280. https://doi.org/10.1088/0964-1726/4/4/007
  23. Chang, J., Buchanan, A.H., Dhakal, R.P. and Moss, P.J. (2008), "Hollow-core concrete slabs exposed to fire", Fire Mater., 32(6), 321-331. https://doi.org/10.1002/fam.970
  24. Cheng, J. (2007), "Hybrid genetic algorithms for structural reliability analysis", Comput. Struct., 85(19-20), 1524-1533. https://doi.org/10.1016/j.compstruc.2007.01.018
  25. Collins, M.P. and Mitchell, D. (1980), "Shear and torsion design of prestressed and non-prestressed concrete beams" PCI J., 25(5), 32-100.
  26. Cuenca, E. and Serna, P. (2013), Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete, Compos Part B-Eng., 45(1), 952-964. https://doi.org/10.1016/j.compositesb.2012.06.005
  27. de Albuquerque, A.T., El Debs, M.K. and Melo, A.M.C. (2012), "A cost optimization-based design of precast concrete floors using genetic algorithms", Automat Constr., 22, 348-356. https://doi.org/10.1016/j.autcon.2011.09.013
  28. de Castilho, V.C., El Debs, M.K. and Nicoletti, M. do C. (2007), "Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists", Eng. Appl. Artif. Intel., 20(4), 519-530. https://doi.org/10.1016/j.engappai.2006.09.003
  29. de Castilho, V.C., Nicoletti, M. do C. and El Debs, M.K. (2005), "An investigation of the use of three selection-based genetic algorithm families when minimizing the production cost of hollow core slabs", Comput. Method.Appl. M., 194(45-47), 4651-4667. https://doi.org/10.1016/j.cma.2004.12.008
  30. del Coz Diaz, J.J., Garcia Nieto, P.J., ÁlvarezRabanal, F.P. and Martinez-Luengas, A.L. (2011), "Design and shape optimization of a new type of hollow concrete masonry block using the finite element method", Eng. Struct., 33(1), 1-9. https://doi.org/10.1016/j.engstruct.2010.09.012
  31. Deng, L. and Cai, C.S. (2009), "Identification of parameters of vehicles moving on bridges", Eng. Struct., 31(10), 2474-2485. https://doi.org/10.1016/j.engstruct.2009.06.005
  32. Descamps, B., Coelho, R.F., Ney, L. and Bouillard, P. (2011), "Multicriteria optimization of lightweight bridge structures with a constrained force density method", Comput. Struct., 89(3-4), 277-284. https://doi.org/10.1016/j.compstruc.2010.11.010
  33. De Stefano, A., Sabia, D. and Sabia, L. (1999), "Probabilistic neural networks for seismic damage mechanisms prediction", Earthq. Eng. Struc., 28(8), 807-821. https://doi.org/10.1002/(SICI)1096-9845(199908)28:8<807::AID-EQE838>3.0.CO;2-#
  34. Dordoni, S., Malerba, P.G., Sgambi, L. and Manenti, S. (2010), "Fuzzy reliability assessment of bridge piers in presence of scouring", Proceedings of The Fifth Int. Conf. on Bridge Maintenance, Safety and Management (IABMAS'10), July 11-15, Philadelphia (USA).
  35. Elgabbas, F., El-Ghandour, A.A., Abdelrahman , A.A. and El-Dieb, A.S. (2010), "Different CFRP strengthening techniques for prestressed hollow core concrete slabs: Experimental study and analytical investigation", Compos. Struct., 92(2), 401-411. https://doi.org/10.1016/j.compstruct.2009.08.015
  36. EN 1168+A2 (2010), Precast concrete products. Hollow core slabs.
  37. EN 1992-1-1.Eurocode 2-design of concrete structures. 2004.
  38. Fairbairn, E.M.R., Silvoso, M.M., Toledo Filho, R.D., Alves, J.L.D. and Ebecken, N.F.F. (2004), "Optimization of mass concrete construction using genetic algorithms", Comput. Struct., 82(2-3), 281-299. https://doi.org/10.1016/j.compstruc.2003.08.008
  39. Foster, S.J., Budiono, B. and Gilbert, R.I. (1996), "Rotating crack finite element model for reinforced concrete structures", Comput. Struct., 58(1), 43-50. https://doi.org/10.1016/0045-7949(95)00109-T
  40. Galvez, J.C., Benitez, J M., Tork, B., Casati, M.J. and Cendon, D.A. (2009), "Splitting failure of precast prestressed concrete during the release of the prestressing force", Eng. Fail. Anal., 16(8), 2618-2634. https://doi.org/10.1016/j.engfailanal.2009.04.023
  41. Garavaglia, E., Pizzigoni, A., Sgambi, L., Basso, N. (2013), "Collapse behaviour in reciprocal frame structures", Struct. Eng. Mech., 46(4), 533-547. https://doi.org/10.12989/sem.2013.46.4.533
  42. Gaudenzi, P., Fantini, E., Koumousis, V.K. and Gantes, C.J. (1998), "Genetic algorithm optimization for the active control of a beam by means of PZT actuators", J. Intel. Mat. Syst. Str., 9(4), 291-300. https://doi.org/10.1177/1045389X9800900407
  43. Girhammar, U.A. and Pajari, M. (2008), "Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping", Constr. Build. Mater., 22(8), 1708-1722. https://doi.org/10.1016/j.conbuildmat.2007.05.013
  44. Giuliani, L. (2012), "Structural safety in case of extreme actions", Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, Int. J. Life Cycle Perf. Eng. (IJLCPE), in press (ISSN: 2043-8648).
  45. Graf, W., Freitag, S., Kaliske, M. and Sickert, J.U. (2010), Recurrent neural networks for uncertain time-dependent structural behavior, Comput-Aided Civ. Inf., 25(5), 322-333. https://doi.org/10.1111/j.1467-8667.2009.00645.x
  46. Guan, H. (2005), "Strut-and-tie model of deep beams with web openings- An optimization approach", Struct. Eng. Mech., 19(4), 361-380. https://doi.org/10.12989/sem.2005.19.4.361
  47. Hegger, J., Roggendorf , T. and Kerkeni, N. (2009), "Shear capacity of prestressed hollow core slabs in slim floor constructions", Eng. Struct., 31(2), 551-559. https://doi.org/10.1016/j.engstruct.2008.10.006
  48. Hsu, T.T.C. (1988), "Softened truss model theory for shear and torsion", ACI Struct. J., 85(6), 624-635
  49. Jafarkhani, R. and Masri, S.F. (2011), "Finite element model updating using evolutionary strategy for damage detection", Comput-Aided Civ. Inf., 26(3), 207-224. https://doi.org/10.1111/j.1467-8667.2010.00687.x
  50. Jiang, X. and Adeli, H. (2005), "Dynamic wavelet neural network for nonlinear identification of highrise buildings", Comput-Aided Civ. Inf., 20(5), 316-330. https://doi.org/10.1111/j.1467-8667.2005.00399.x
  51. Kim, Y., Langari, R. and Hurlebus, S. (2010), "Model-based multi-input, multi-output supervisory semiactive nonlinear fuzzy controller", Comput-Aided Civ. Inf., 25(5), 387-393. https://doi.org/10.1111/j.1467-8667.2009.00649.x
  52. Kim, S.H., Yoon, C. and Kim, B.J. (2000), "Structural monitoring system based on sensitivity analysis and a neural network", Comput-Aided Civ. Inf., 15(4), 309-318.
  53. Koh, B.H. and Dyke, S.J. (2007), "Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data", Comput. Struct., 85(3-4), 117-130. https://doi.org/10.1016/j.compstruc.2006.09.005
  54. Lam, D. (2002), "Composite steel beams with precast hollow core slabs: behaviour and design", Prog. Struct. Eng. Mater., 4(2), 179-185. https://doi.org/10.1002/pse.128
  55. Lam, D., Elliott, K.S., Nethercot, D.A. (2000), "Parametric study on composite steel beams with precast concrete hollow core floor slabs", J. Constr. Steel Res., 54(2), 283-304. https://doi.org/10.1016/S0143-974X(99)00049-8
  56. Lee, Y. and Wei, C.H. (2010), "A Computerized feature selection using genetic algorithms to forecast freeway accident duration times", Comput-Aided Civ. Inf., 25(2), 132-148. https://doi.org/10.1111/j.1467-8667.2009.00626.x
  57. Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317(1-2), 175-189. https://doi.org/10.1016/j.jsv.2008.03.026
  58. Luo, Y. and Kang, Z. (2013), "Layout design of reinforced concrete structures using two-material topology optimization with drucker-prager yield constraints", Struct. Multidiscip. O., 47( 1), 95-110 https://doi.org/10.1007/s00158-012-0809-1
  59. Malekly, H., Mousavi, S.M. and Hashemi, H. (2009), "A fuzzy integrated methodology for evaluating conceptual bridge design", Expert Syst. Appl., 37(7), 4910-4920.
  60. Mathakari, S., Gardoni, P., Agarwal, P., Raich, A. and Haukaas, T. (2007), "Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms", Comput. Aided Civ. Inf., 22(4), 282-292. https://doi.org/10.1111/j.1467-8667.2007.00485.x
  61. Moller, B., Graf, W. and Beer, M. (2003), "Safety assessment of structures in view of fuzzy randomness", Comput. Struct., 81(15), 1567-1582. https://doi.org/10.1016/S0045-7949(03)00147-0
  62. Orcesi, A.D. and Frangopol, D.M. (2011), "Optimization of bridge maintenance strategies based on structural health monitoring information", Struct. Saf., 33(1), 26-41. https://doi.org/10.1016/j.strusafe.2010.05.002
  63. Pang X.B.D. and Hsu T.T.C. (1995), "Behaviour of reinforced concrete membrane elements in shear", ACI Struct. J., 92(6), 665-679.
  64. Petrini, F. and Bontempi, F. (2011), "Estimation of fatigue life for long span suspension bridge hangers under wind action and train transit", Struct. Infrastruct. E., 7(7-8), 491-507. https://doi.org/10.1080/15732479.2010.493336
  65. Petrini, F., Li, H. and Bontempi, F. (2010), "Basis of design and numerical modeling of offshore wind turbines", Struct. Eng. Mech., 36(5), 599-624. https://doi.org/10.12989/sem.2010.36.5.599
  66. Pisanty, A. (1992), "The shear strength of extruded hollow-core slabs", Mater. Struct., 25(4), 224-230. https://doi.org/10.1007/BF02473067
  67. Pisanty, A. and Regan, P.E. (1991), "Direct assessment of the tensile strength of the web in prestressed precast hollow-core slabs", Mater. Struct., 24(6), 451-455. https://doi.org/10.1007/BF02472017
  68. Przemieniecki, J.S. (1968), Theory of Matrix Structural Analysis, New York: McGraw-Hill.
  69. Reuter, U. and Moller, B. (2010), "Artificial neural networks for forecasting of fuzzy time series", Comput-Aided Civ. Inf., 25(5), 363-374. https://doi.org/10.1111/j.1467-8667.2009.00646.x
  70. Rohani, S.M., Vafaeesefat, A., Esmkhani, M., Partovi, M. and Molladavoudi, H.R. (2013), "Composite locomotive frontend analysis and optimization using genetic algorithm", Struct. Eng. Mech., 47(5), 729-740. https://doi.org/10.12989/sem.2013.47.5.729
  71. Sadeghi, N., Fayek, A.R. and Pedrycz, W. (2010), "Fuzzy monte carlo simulation and risk assessment in construction", Comput-Aided Civ. Inf., 25(4), 238-252. https://doi.org/10.1111/j.1467-8667.2009.00632.x
  72. Sgambi, L. (2004), "Fuzzy theory based approach for three-dimensional nonlinear analysis of reinforced concrete two-blade bridge piers", Comput. Struct., 82(13-14), 1067-1076. https://doi.org/10.1016/j.compstruc.2004.03.016
  73. Sgambi, L. (2008), "Artificial intelligence: historical development and applications in civil engineering field", Proceedings of The Fourth Int. Conf. on Bridge Maintenance, Safety and Management (IABMAS'08), July 13-17, Seoul (Korea), ISBN 978 0 415 46844 2.
  74. Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), "Genetic algorithms for the dependability assurance in the design of a long-span suspension bridge", Comput-Aided Civ. Inf., 27(9), 655-675. https://doi.org/10.1111/j.1467-8667.2012.00780.x
  75. Srinivas, V. and Ramanjaneyulu, K. (2007), "An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks", Adv. Eng. Softw., 38(7), 475-487. https://doi.org/10.1016/j.advengsoft.2006.09.016
  76. Starossek, U. and Haberland, M. (2011), "Approaches to measures of structural robustness", Struct. Infrastruct. E., 7(7-8), 625-631 https://doi.org/10.1080/15732479.2010.501562
  77. Tagherouit, W.B., Bengassem, J. and Bennis, S. (2011), "A fuzzy expert system for prioritizing rehabilitation sewer networks", Comput. Aided Civ. Inf., 26(2), 146-152. https://doi.org/10.1111/j.1467-8667.2010.00673.x
  78. Tomas, A. and Marti, P. (2010), "Shape and size optimisation of concrete shells", Eng. Struct., 32(6), 1650-1658. https://doi.org/10.1016/j.engstruct.2010.02.013
  79. Vecchio F.J. and Collins M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", J. Am. Concrete I., 83(2), 219-231.
  80. Vlahogianni, E.I., Karlaftis, M.G. and Golias, J.C. (2007), "Spatio-temporal short-term urban traffic flow forecasting using genetically-optimized modular networks", Comput-Aided Civ. Inf., 22(5), 317-325. https://doi.org/10.1111/j.1467-8667.2007.00488.x
  81. Wang, K.C.P. and Li, Q. (2011), "Pavement smoothness prediction based on fuzzy and gray theories", Comput-Aided Civ. Inf., 26(1), 69-76.
  82. Wilson, J.L., Robinson, A.J. and Balendra, T. (2008), "Performance of precast concrete load-bearing panel structures in regions of low to moderate seismicity", Eng. Struct., 30(7), 1831-1841. https://doi.org/10.1016/j.engstruct.2007.12.008
  83. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  84. Zadeh, L. (1997), "What is soft computing", Soft Comput., 1(1), 1.

Cited by

  1. Numerical web-shear strength assessment of precast prestressed hollow core slab units vol.102, 2015, https://doi.org/10.1016/j.engstruct.2015.08.013
  2. Significance of GPR polarisation for improving target detection and characterisation vol.29, pp.4, 2014, https://doi.org/10.1080/10589759.2014.949708
  3. Monte Carlo simulation for seismic analysis of a long span suspension bridge vol.78, 2014, https://doi.org/10.1016/j.engstruct.2014.08.051
  4. Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm vol.19, pp.2, 2017, https://doi.org/10.12989/cac.2017.19.2.127
  5. Influence of corrosive phenomena on bearing capacity of RC and PC beams vol.5, pp.2, 2014, https://doi.org/10.12989/acc.2017.5.2.117
  6. Optimization of long span portal frames using spatially distributed surrogates vol.24, pp.2, 2014, https://doi.org/10.12989/scs.2017.24.2.227
  7. Soft computing techniques in structural and earthquake engineering: a literature review vol.207, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2020.110269
  8. Experimental and Numerical Assessment of Flexural and Shear Behavior of Precast Prestressed Deep Hollow-Core Slabs vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00407-y
  9. The effect of the new stopping criterion on the genetic algorithm performance vol.27, pp.1, 2021, https://doi.org/10.12989/cac.2021.27.1.063
  10. Optimal design of passive‐adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines vol.24, pp.6, 2014, https://doi.org/10.1002/we.2590