DOI QR코드

DOI QR Code

Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay

  • 투고 : 2014.05.03
  • 심사 : 2014.06.30
  • 발행 : 2014.06.25

초록

The objective of this study was to evaluate the cytotoxicity of poly (lactic acid) (PLA) nanoparticles. We used a water-soluble, amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB30W), as a stabilizer for the PLA nanoparticles. The PLA nanoparticles and PMB30W-modified PLA (PLA/PMB30W) nanoparticles were prepared by evaporating tetrahydrofuran (THF) from its aqueous solution. Precipitation of the polymers from the aqueous solution produced PLA and PLA/PMB30W nanoparticles with a size distribution of $0.4-0.5{\mu}m$. The partial coverage of PMB30W on the surface of the PLA/PMB30W nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light-scattering (DLS). A high-content automated screening assay (240 random fields per group) revealed that the PLA nanoparticles induced apoptosis in a mouse macrophage-like cell line (apoptotic population: 73.9% in 0.8 mg PLA/mL), while the PLA/PMB30W nanoparticles remained relatively non-hazardous in vitro (apoptotic population: 13.8% in 0.8 mg PLA/mL). The reduction of the apoptotic population was attributed to the phosphorylcholine groups in the PMB30W bound to the surface of the nanoparticle. In conclusion, precipitation of PLA in THF aqueous solution enabled the preparation of PLA nanoparticles with similar shapes and size distribution but different surface characteristics. PMB30W was an effective stabilizer and surface modifier, which reduced the cytotoxicity of PLA nanoparticles by enabling their avoidance of the mononuclear phagocyte system.

키워드

과제정보

연구 과제번호 : Nanomedicine Molecular Science

연구 과제 주관 기관 : Ministry of Education, Culture, Sports, Science, and Technology

참고문헌

  1. Alexis, F., Pridgen, E.M., Langer, R. and Farokhzad, O.C. (2010), Nanoparticle technologies for cancer therapy, Schafer-Korting, M. (Ed.), Drug delivery, Springer, Verlag Berlin Heidelberg.
  2. Armstrong, J.K., Hempel, G., Koling, S., Chan, I.S., Fisher, T., Meiselman, H.J. and Garratty, G. (2007), "Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients", Cancer, 110(1), 103-111. https://doi.org/10.1002/cncr.22739
  3. Bergsma, J.E., de Bruijn, W.C., Rozema, F.R., Bos, R.R. and Boering, G. (1995), "Late degradation tissue response to poly(L-lactide) bone plates and screws", Biomaterials, 16(1), 25-31. https://doi.org/10.1016/0142-9612(95)91092-D
  4. Champion, J.A., Walker, A. and Mitragotri, S. (2008), "Role of particle size in phagocytosis of polymeric microspheres", Pharm. Res., 25(8), 1815-1821. https://doi.org/10.1007/s11095-008-9562-y
  5. Chen, J.L., Chiang, C.H. and Yeh, M.K. (2001), "The mechanism of PLA microparticle formation by waterin- oil-in-water solvent evaporation method", J. Microencapsul., 19(3), 333-346.
  6. Cheng, J., Teply, B. A., Sherifi, I., Sung, J., Luther, G., Gu, F., Levy-Nnissenbaum, E., Radovic-Moreno, A., Langer, R. and Farokhzard, O.C. (2007), "Formation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery", Biomaterials, 28(5), 869-876. https://doi.org/10.1016/j.biomaterials.2006.09.047
  7. Choi, J., Konno, T. and Ishihara, K. (2014), "Multilayered phospholipid polymer hydrogels for releasing cell growth factors", Biomater. Biomed. Eng., 1(1), 1-12. https://doi.org/10.12989/bme.2014.1.1.001
  8. Choi, S.W., Kim, W.S., and Kim, J.H. (2003), "Surface modification of functional nanoparticles for controlled drug delivery", J. Dispersion Sci. Technol., 24(3-4), 475-487. https://doi.org/10.1081/DIS-120021803
  9. De Jong, W.H., Eelco Bergsma, J., Robinson, J.E. and Bos, R.R. (2005), "Tissue response to partially in vitro predegraded poly-L-lactide implants", Biomaterials, 26(14), 1781-1791. https://doi.org/10.1016/j.biomaterials.2004.06.026
  10. Duval, M. and Gross, E. (2013), "Degradation of poly(ethylene oxide) in aqueous solutions by ultrasonic waves", Macromolecules, 46(12), 4972-4977. https://doi.org/10.1021/ma400737g
  11. Fadeel, B. and Garcia-Bennett, A.E. (2010), "Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications", Adv. Drug Deliv. Rev., 62(3), 362-374. https://doi.org/10.1016/j.addr.2009.11.008
  12. Garay, R.P. and Labaune, J.P. (2011), "Immunogenicity of polyethylene glycol (PEG)", The Open Conference Proceedings Journal, 2, 104-107.
  13. Geys, J. Nemery, B. and Hoet, P.H. (2010), "Assay conditions can influence the outcome of cytotoxicity tests of nanomaterials: Better assay characterization is needed to compare studies", Toxicol. in Vitro, 24(2), 620-629. https://doi.org/10.1016/j.tiv.2009.10.007
  14. Goto, Y. Matsuno, R., Konno, T., Takai, M. and Ishihara, K. (2008), "Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins", Biomacromolecules, 9(3), 828-833. https://doi.org/10.1021/bm701161d
  15. Hackenberg, S., Scherzed, A., Technau, A., Kessler, M., Froelich, K., Ginzkey, C., Koehler, C., Burghartz, M., Hagen, R. and Kleinsasser, N. (2011), "Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro", Toxicol. in Vitro, 25(3), 657-663. https://doi.org/10.1016/j.tiv.2011.01.003
  16. Higuchi, T., Yabu, H. and Shimomura, M. (2006), "Simple preparation of hemispherical polystyrene particles", Colloids Surf. A: Physicochem. Eng. Aspects, 284-285, 250-253. https://doi.org/10.1016/j.colsurfa.2005.10.042
  17. Horie, M., Nishio, K., Fujita, K., Kato, H., Endoh, S., Suzuki, M., Nakamura, A., Miyauchi, A., Kinugasa, S., Yamamoto, K., Iwahashi, H., Murayama, H., Niki, E. and Yoshida, Y. (2010), "Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less", Toxicol. in Vitro, 24(6), 1629-1638. https://doi.org/10.1016/j.tiv.2010.06.003
  18. Hubbell, J.A., Thomas, S.N. and Swartz, M.A. (2009), "Materials engineering for immunomodulation", Nature, 462, 449-460. https://doi.org/10.1038/nature08604
  19. Ishida, T., Wang, X.Y., Shimizu, T., Nawata, K. and Kiwada, H. (2007), "PEGylated liposomes elicit an anti- PEG IgM response in a T-cell-indipendent manner", J. Control. Release, 122(3), 349-355. https://doi.org/10.1016/j.jconrel.2007.05.015
  20. Ishihara, K., Goto, Y., Takai, M., Matsuno, R., Inoue, Y. and Konno, T. (2011), "Novel polymer biomaterials and interfaces inspired from cell membrane functions", Biochim. Biophys. Acta, 1810(3), 268-275. https://doi.org/10.1016/j.bbagen.2010.04.008
  21. Ishihara, K., Iwasaki, Y. and Nakabayashi, N. (1999), "Polymeric lipid nanosphere consisting of watersoluble poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)", Polym. J., 31, 1231-1236. https://doi.org/10.1295/polymj.31.1231
  22. Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y. and Nakabayashi, N. (1998), "Why do phospholipid polymers reduce protein adsorption?", J. Biomed. Mater. Res., 39(2), 323-330. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  23. Ishihara, K., Ueda, T. and Nakabayashi, N. (1990), "Preparation of phospholipid polylners and their properties as polymer hydrogel membranes", Polym. J., 22, 355-360. https://doi.org/10.1295/polymj.22.355
  24. Jan, E., Byrne, S.J., Cuddihy, M., Davies, A.M., Volkov, Y., Gun"ko, Y.K. and Kotov, N.A. (2008), "Highcontent screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles", ACS Nano, 2(5), 928-938. https://doi.org/10.1021/nn7004393
  25. Jeffery, H., Davis, S.S. and O'Hagan, D.T. (1991), "The preparation and characterization of poly(lactide-coglycolide) microparticles. I: Oil-in-water emulsion solvent evaporation", Int. J. Pharm., 77(2-3), 169-175. https://doi.org/10.1016/0378-5173(91)90314-E
  26. Kim, H.I., Takai, M. and Ishihara, K. (2009), "Bioabsorbable material-containing phosphorylcholine grouprich surfaces for temporary scaffolding of the vessel wall", Tissue Eng. Part C Methods. 15(2), 125-133. https://doi.org/10.1089/ten.tec.2008.0307
  27. Kim, H.I., Ishihara, K., Lee, S., Seo, J.H., Kim, H.Y., Suh, D., Kim, M.U., Konno, T., Takai, M. and Seo, J.S. (2011), "Tissue response to poly(L-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents", Biomaterials, 32(9), 2241-2247. https://doi.org/10.1016/j.biomaterials.2010.11.067
  28. Konno, T., Kurita, K., Iwasaki, Y., Nakabayashi, N. and Ishihara, K. (2001) "Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer", Biomaterials, 22(13), 1883-1889. https://doi.org/10.1016/S0142-9612(00)00373-2
  29. Kumari, A., Yadav, S.K. and Yadav S.C. (2010), "Biodegradable polymeric nanoparticles based on drug delivery systems", Colloid. Surf. B: Biointerfaces, 75(1), 1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  30. Lankveld, D.P., Van Loveren, H., Baken, K.A. and Vandebriel, R.J. (2010), "In vitro testing for direct immunotoxicity: state of the art", Methods Mol. Biol., 598, 401-423. https://doi.org/10.1007/978-1-60761-401-2_26
  31. Lassale, V. and Ferreira, M.L. (2007), "PLA nano- and microparticles for drug delivery: an overview of the methods of preparation", Macromol. Biosci., 7(6), 767-783. https://doi.org/10.1002/mabi.200700022
  32. McGary, Jr, C.W. (1960), "Degradation of poly(ethylene oxide)", J. Polym. Sci., 46(147), 51-57. https://doi.org/10.1002/pol.1960.1204614705
  33. Matsuno, R. and Ishihara, K. (2011), "Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications", Nano Today, 6(1), 61-74. https://doi.org/10.1016/j.nantod.2010.12.009
  34. Mizutani, Y. (1996), "Lipid macrosphere (lipid emulsions) as a drug carrier-An overview", Adv. Drug Delivery Rev., 20(2-3), 113-115. https://doi.org/10.1016/0169-409X(95)00114-M
  35. Moro, T., Takatori, Y., Ishihara, K., Konno, T., Takigawa, Y., Matsushita, T., Chung, U.I., Nakamura, K. and Kawaguchi, H. (2004), "Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis", Nat. Mater., 3, 829-836. https://doi.org/10.1038/nmat1233
  36. Neto, C.G.da T., Pereira, M.R. and Fonseca, J.L.C. (2002), "Viscometric monitoring of poly(ethylene oxide) degradation", Polym. Degrad. Stabil., 76(2), 227-232. https://doi.org/10.1016/S0141-3910(02)00018-6
  37. Semeta, B., Booysen, L.I.J., Kalombo, L., Venter, J.D., Katata, L., Ramalapa, B., Verschoor, J.A. and Swai, H. (2010), "In vivo uptake and acute immune response to orally administrates chitosan and PEG coated PLGA nanoparticles", Toxicol. Appl. Pharmacol., 249(2), 158-165. https://doi.org/10.1016/j.taap.2010.09.002
  38. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T. and Sasisekharan, R. (2005), "Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system", Nature, 436, 568-572. https://doi.org/10.1038/nature03794
  39. Soppimath, K.S. and Aminabhavi, T.T. (2001), "Biodegradable polymeric nanoparticles as drug delivery devices", J. Control. Release, 70(1-2), 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
  40. Tobio, M., Gref, R., Sancez, A., Langer, R. and Alonso, M.J. (1998), "Stealth PLA-PEG nanoparticles as protein carriers for nasal administration", Pharm. Res., 15(2), 270-275. https://doi.org/10.1023/A:1011922819926
  41. Ueda, T., Ishihara, K. and Nakabayashi, N. (1995), "Adsorption-desorption of proteins on phospholipid polymer surfaces evaluated by dynamic contact angle measurement", J. Biomed. Mater. Res., 29(3), 381-387. https://doi.org/10.1002/jbm.820290313
  42. Ueda, T., Oshida, J., Kurita, K., Ishihara, K. and Nakabayashi, N. (1992), "Preparation of 2- methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility", Polym. J., 24, 1259-1269. https://doi.org/10.1295/polymj.24.1259
  43. Wada, M., Jinno, H., Ueda, M., Ikeda, T., Kitajima, M., Konno, T., Watanabe, J. and Ishihara, K. (2007), "Efficacy of an MPC-BMA co-polymer as a nanotransporter for paclitaxel", Anticancer Res., 27(3B), 1431-1435.
  44. Wischke, C. and Schwendeman, S. (2008), "Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles", Int. J. Pharm., 364(2), 298-327. https://doi.org/10.1016/j.ijpharm.2008.04.042