DOI QR코드

DOI QR Code

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube

PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성

  • Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon) ;
  • Son, Kwonsang (Department of Chemical Engineering, University of Suwon) ;
  • Lee, Minho (Department of Chemical Engineering, University of Suwon)
  • Received : 2013.06.19
  • Accepted : 2013.10.10
  • Published : 2014.02.10

Abstract

Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.

본 연구에서는 탄소섬유(carbon fiber, CF)와 탄소나노튜브(carbon nanotube, CNT)를 포함하는 PMMA/PVDF 및 PET/PVDF 블렌드 나노복합재료를 이축성형 압출기를 이용하여 용융삽입법으로 제조하였다. SEM을 이용하여 PMMA/PVDF/CF/CNT 나노복합재료의 모폴로지를 관찰한 결과, CNT가 matrix에서 효과적으로 분산되지 못한 반면 PET/PVDF/CF/CNT 나노복합재료에서는 CNT가 잘 분산된 것으로 관찰되었다. 상분리된 PET/PVDF 블렌드에서 CNT가 PET 상에 효과적으로 분산된 것으로 보였는데 이는 PET의 페닐렌기와 CNT 표면의 그라파이트 시트가 ${\pi}-{\pi}$ interaction에 의한 것으로 판단되었다. 또한 CF도 PET와의 계면 접착성이 우수한 것으로 나타났다. PET/PVDF/CF 나노복합재료의 전기전도도는 CNT를 첨가함으로써 증가하였으나 PMMA/PVDF/CF 나노복합재료에 CNT를 첨가한 경우 전기전도도가 향상되지 않았다. 모폴로지 관찰결과에서 CNT의 분산 정도는 전기전도도 물성 결과와 일치하였다. DSC 분석 결과, PET/PVDF/CF/CNT 나노복합재료에서는 결정화 온도가 증가하였는데, 이는 CF 및 CNT가 PET의 결정화를 촉진 시키는 조핵제 역할을 하기 때문인 것으로 보였다. 굴곡물성 결과, PET/PVDF/CF/CNT 나노복합재료에서 PET와 CF의 친화성이 우수하여 굴곡탄성률이 크게 증가하였다.

Keywords

References

  1. E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong, and I. H. Oh, Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources, 125, 178-182 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.039
  2. S. R. Dhakate, S. Sharma, N. Chauhan, R. K. Seth, and R. B. Mathur, CNTs nanostructuring effect on the properties of graphite composite bipolar plate, Int. J. Hydrogen Energy, 35, 4195-4200 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.072
  3. J. Scholta, B. Rohland, V. Trapp, and U. Focken, Investigations on novel low-cost graphite composite bipolar plates, J. Power Sources, 84, 231-234 (1999). https://doi.org/10.1016/S0378-7753(99)00322-5
  4. J. Song, F. Mighri, A. Ajji, and C. Lu, Polyvinylidene fluoride/ poly(ethylene terephthalate) conductive composites for proton exchange membrane fuel cell bipolar plates : Crystallization, structure, and through-plane electrical resistivity, Polym. Eng. Sci., 52, 2552-2558 (2012). https://doi.org/10.1002/pen.23216
  5. P. B. Messersmith and E. P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6, 1719-1725 (1994). https://doi.org/10.1021/cm00046a026
  6. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fukushima, T. Kurauchi, and O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res., 8, 1185-1189 (1993). https://doi.org/10.1557/JMR.1993.1185
  7. S. Mehta, F. M. Mirabella, K. Rufener, and A. Bafna, Thermoplastic olefin/clay nanocomposites : morphology and mechanical properties, J. Appl. Polym. Sci., 92, 928-936 (2004). https://doi.org/10.1002/app.13693
  8. B. M. Novak, Hybrid nanocomposite materials-between inorganic glasses and organic polymers, Adv. Mater., 5, 422-433 (1993). https://doi.org/10.1002/adma.19930050603
  9. S. D. Burnside and E. P. Giannelis, Synthesis and properties of new poly(dimethylsiloxane) nanocomposites, Chem. Mater., 7, 1597-1600 (1995). https://doi.org/10.1021/cm00057a001
  10. P. Potschke, T. D. Fornes, and D. R. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, 43, 3247-3255 (2002). https://doi.org/10.1016/S0032-3861(02)00151-9
  11. T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S. E. J. Bell, G. P. Brennan, D. Bein, P. Lemoine, and J. P. Quinn, Polyethylene multiwalled carbon nanotube composites, Polymer, 46, 8222-8232 (2005). https://doi.org/10.1016/j.polymer.2005.06.094
  12. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40, 5967-5971 (1999). https://doi.org/10.1016/S0032-3861(99)00166-4
  13. M. S. P. Shaffer and A. H. Windle, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater., 11, 937-941 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  14. E. T. Thostenson, Z. Ren, and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites : a review, Compos. Sci. Technol., 61, 1899-1912 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  15. B. K. Kakati, A. Ghosh, and A. Verma, Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 38, 9362-9369 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.075
  16. M. Wu and L. L. Shaw, A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates, Int. J. Hydrogen Energy, 30, 373-380 (2005).
  17. P. Ren, G. Liang, and Z. Zhang, Influence of epoxy sizing of carbon- fiber on the properties of carbon fiber/cyanate ester composites, Polym. Compos., 27, 591-598 (2006). https://doi.org/10.1002/pc.20230
  18. G. Scalia, J. P. F. Lagerwall, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, and S. Roth, Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by raman spectroscopy, Phys. Stat. Sol., 243, 3238-3241 (2006). https://doi.org/10.1002/pssb.200669205
  19. L. Zhang, C. Wan, and Y. Zhang, Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites, Compos. Sci. Technol., 69, 2212-2217 (2009). https://doi.org/10.1016/j.compscitech.2009.06.005
  20. Q. Meng, W. Li, Y. Zheng, and Z. Zhang, Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride), J. Appl. Polym. Sci., 116, 2674-2684 (2010).
  21. T. Chatterjee, K. Yurekli, V. G. Hadjiev, and R. Krishnamoorti, Single-walled carbon nanotube dispersions in poly(ethylene oxide), Adv. Funct. Mater., 15, 1832-1838 (2005). https://doi.org/10.1002/adfm.200500290

Cited by

  1. Isothermal and Non-Isothermal Crystallization Kinetics of Conductive Polyvinylidene Fluoride/Poly(Ethylene Terephthalate) Based Composites vol.07, pp.01, 2016, https://doi.org/10.4236/msa.2016.71002
  2. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites vol.65, pp.3, 2014, https://doi.org/10.1080/09506608.2019.1582180