References
- E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong, and I. H. Oh, Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources, 125, 178-182 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.039
- S. R. Dhakate, S. Sharma, N. Chauhan, R. K. Seth, and R. B. Mathur, CNTs nanostructuring effect on the properties of graphite composite bipolar plate, Int. J. Hydrogen Energy, 35, 4195-4200 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.072
- J. Scholta, B. Rohland, V. Trapp, and U. Focken, Investigations on novel low-cost graphite composite bipolar plates, J. Power Sources, 84, 231-234 (1999). https://doi.org/10.1016/S0378-7753(99)00322-5
- J. Song, F. Mighri, A. Ajji, and C. Lu, Polyvinylidene fluoride/ poly(ethylene terephthalate) conductive composites for proton exchange membrane fuel cell bipolar plates : Crystallization, structure, and through-plane electrical resistivity, Polym. Eng. Sci., 52, 2552-2558 (2012). https://doi.org/10.1002/pen.23216
- P. B. Messersmith and E. P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6, 1719-1725 (1994). https://doi.org/10.1021/cm00046a026
- Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fukushima, T. Kurauchi, and O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res., 8, 1185-1189 (1993). https://doi.org/10.1557/JMR.1993.1185
- S. Mehta, F. M. Mirabella, K. Rufener, and A. Bafna, Thermoplastic olefin/clay nanocomposites : morphology and mechanical properties, J. Appl. Polym. Sci., 92, 928-936 (2004). https://doi.org/10.1002/app.13693
- B. M. Novak, Hybrid nanocomposite materials-between inorganic glasses and organic polymers, Adv. Mater., 5, 422-433 (1993). https://doi.org/10.1002/adma.19930050603
- S. D. Burnside and E. P. Giannelis, Synthesis and properties of new poly(dimethylsiloxane) nanocomposites, Chem. Mater., 7, 1597-1600 (1995). https://doi.org/10.1021/cm00057a001
- P. Potschke, T. D. Fornes, and D. R. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, 43, 3247-3255 (2002). https://doi.org/10.1016/S0032-3861(02)00151-9
- T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S. E. J. Bell, G. P. Brennan, D. Bein, P. Lemoine, and J. P. Quinn, Polyethylene multiwalled carbon nanotube composites, Polymer, 46, 8222-8232 (2005). https://doi.org/10.1016/j.polymer.2005.06.094
- J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer, 40, 5967-5971 (1999). https://doi.org/10.1016/S0032-3861(99)00166-4
- M. S. P. Shaffer and A. H. Windle, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater., 11, 937-941 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
- E. T. Thostenson, Z. Ren, and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites : a review, Compos. Sci. Technol., 61, 1899-1912 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
- B. K. Kakati, A. Ghosh, and A. Verma, Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 38, 9362-9369 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.075
- M. Wu and L. L. Shaw, A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates, Int. J. Hydrogen Energy, 30, 373-380 (2005).
- P. Ren, G. Liang, and Z. Zhang, Influence of epoxy sizing of carbon- fiber on the properties of carbon fiber/cyanate ester composites, Polym. Compos., 27, 591-598 (2006). https://doi.org/10.1002/pc.20230
- G. Scalia, J. P. F. Lagerwall, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, and S. Roth, Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by raman spectroscopy, Phys. Stat. Sol., 243, 3238-3241 (2006). https://doi.org/10.1002/pssb.200669205
- L. Zhang, C. Wan, and Y. Zhang, Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites, Compos. Sci. Technol., 69, 2212-2217 (2009). https://doi.org/10.1016/j.compscitech.2009.06.005
- Q. Meng, W. Li, Y. Zheng, and Z. Zhang, Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride), J. Appl. Polym. Sci., 116, 2674-2684 (2010).
- T. Chatterjee, K. Yurekli, V. G. Hadjiev, and R. Krishnamoorti, Single-walled carbon nanotube dispersions in poly(ethylene oxide), Adv. Funct. Mater., 15, 1832-1838 (2005). https://doi.org/10.1002/adfm.200500290
Cited by
- Isothermal and Non-Isothermal Crystallization Kinetics of Conductive Polyvinylidene Fluoride/Poly(Ethylene Terephthalate) Based Composites vol.07, pp.01, 2016, https://doi.org/10.4236/msa.2016.71002
- Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites vol.65, pp.3, 2014, https://doi.org/10.1080/09506608.2019.1582180