References
-
A. W. Fairhall, Accumulation of fossil
$CO_2$ in the atmosphere and the sea, Nature, 245, 20-23 (1973). https://doi.org/10.1038/245020a0 - C. Rosenzweig and M. L. Parry, Potential impact of climate change on world food supply, Nature, 367, 133-138 (1994). https://doi.org/10.1038/367133a0
- U. R. Sumaila, W. W. L. Cheung, V. W. Y. Lam, D. Pauly, and S. Herrick, Climate change impacts on the biophysics and economics of world fisheries, Nat. Clim. Chang., 1, 449-456 (2011). https://doi.org/10.1038/nclimate1301
- United Nations World Commission on Environment and Development, Our common future [Brundtland Report], Oxford University Press, (1987).
- G. Boyle, Renewable Energy: Power for a Sustainable Future, 3rd ed., Oxford University Press, USA (2012).
- B. Dunn, H. Kamath, and J.-M Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334, 928-935 (2011). https://doi.org/10.1126/science.1212741
- M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
- J.-M. Tarascon and M. Armand, Issues and challenges facing the rechargeablelithium batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
- J. B. Goodenough and K.-S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135, 1167-1176 (2013). https://doi.org/10.1021/ja3091438
- X.-L. Wu, Y.-G. Guo, and L.-J. Wan, Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem.-Asian J., 8, 1948-1958 (2013). https://doi.org/10.1002/asia.201300279
- K. T. Lee and J. Cho, Role of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, 6, 28-41 (2011). https://doi.org/10.1016/j.nantod.2010.11.002
- J. Jiang, Y. Li, J. Liu, and X. Huang, Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 3, 45-58 (2011). https://doi.org/10.1039/c0nr00472c
- R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T.-M.Lu, P. N. Kumta, and N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5, 2236-2242 (2009). https://doi.org/10.1002/smll.200900382
- N. Zhao, L. Fu, L. Yang, T. Zhang, G. Wang, Y. Wu, and T. van Ree, Nanostructured anode materials for Li-ion batteries, Pure Appl. Chem., 80, 2283-2295 (2008).
- N. Nitta and G. Yushin, High-capacity anode materials for lithiumion batteries: Choice of elements and structures for active particles, Part. Part. Syst. Charact., DOI: 10.1002/ppsc.201300231.
- M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 113, 5364-5457 (2013). https://doi.org/10.1021/cr3001884
- T. D. Bogard, A. M. Chockla, and B. A. Korgel, High capacity lithium ion battery anodes of silicon and germanium, Curr. Opin. Chem. Eng., 2, 286-293 (2013). https://doi.org/10.1016/j.coche.2013.07.001
- Q. Zhang, E. Uchaker, S. L. Candelaria, and G. Cao, Nanomaterials for energy conversion and storage, Chem. Soc. Rev., 42, 3127-3171 (2013). https://doi.org/10.1039/c3cs00009e
- H. Ikeda, T. Saito, H. Tamura, in Proc. Manganese Dioxide Symp. (eds A. Kozawa, R. H. Brodd), IC sample office, Cleveland, OH, 1975, Vol 1.
- M. S. Whittingham, Chalcogenide battery, US Patent 4009052.
- B. M. L. Rao, R. W. Francis, and H. A. Christopher, Lithiumaluminumelectrode, J. Electrochem. Soc., 124, 1490-1492 (1977). https://doi.org/10.1149/1.2133098
- B. C. H. Steele, Fast ion transport in solids (ed. W. Van Gool), North-Holland Amsterdam, (1973).
- A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed., 51, 5798-5800 (2012). https://doi.org/10.1002/anie.201105006
-
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCo
$O_2$ (0 < x$\leq$ 1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 15, 783-789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4 - M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mater. Res. Bull., 18, 461-472 (1983). https://doi.org/10.1016/0025-5408(83)90138-1
- J. B. Goodenough, K. Mizushima, P. J. Wiseman, Electrochemical cell and method of making ion conductors for said cell, EP0017400B1 (1984).
- D. W. Murphy, F. J. DiSalvo, J. N. Carides, and J. V. Waszczak, Topochemical reactions of rutile related structures with lithium, Mater. Res. Bull., 13, 1395-1402 (1978). https://doi.org/10.1016/0025-5408(78)90131-9
- M. Lazzari and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc., 127, 773-774 (1980). https://doi.org/10.1149/1.2129753
- W. van Schalkwijk and B. Scrosati, Advances in Lithium-ion batteries, Kluwer Academic/Plenum, Boston, USA (2004).
- N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, 9994-10024 (2012). https://doi.org/10.1002/anie.201201429
- J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, J. Electrochem. Soc., 151, A698-A702 (2004). https://doi.org/10.1149/1.1697412
- S. Yoon, C.-M. Park, and H.-J. Sohn, Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries, Electrochem. Solid State Lett., 11, A42-A45 (2008). https://doi.org/10.1149/1.2836481
- L. Baggetto and P. H. L. Notten, Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study, J. Electrochem. Soc., 156, A169-A175 (2009). https://doi.org/10.1149/1.3055984
- X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, and J. Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Adv. Energy Mater., 2, 722-741 (2012). https://doi.org/10.1002/aenm.201200024
- X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu, and J. Y. Huang, Reversible nanopore formation in Ge nanowires during lithiationdelithiation cycling: An in situ transmission electron microscopy study, NanoLett., 11, 3991-3997 (2011). https://doi.org/10.1021/nl2024118
- X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries, Energy Environ. Sci., 4, 3844- 3860 (2011). https://doi.org/10.1039/c1ee01918j
- X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Anisotrophic swelling and fracture of silicon nanowires during lithiation, NanoLett., 11, 3312-3318 (2011). https://doi.org/10.1021/nl201684d
- X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J.-H. Cho, S. A. Dayeh, S. T. Picraux, J. P. Sullivan, S. X. Mao, Z. Z. Ye, and J. Y. Huang, Ultrafast electrochemical lithiation of individual Si nanowire anodes, NanoLett., 11, 2251-2258 (2011). https://doi.org/10.1021/nl200412p
- X. H. Liu, L. Zhong, L. Q. Zhang, A. Kushima, S. X. Mao, J. Li, Z. Z. Ye, J. P. Sullivan, and J. Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging, Appl. Phys. Lett., 98, 183107 (2011). https://doi.org/10.1063/1.3585655
- M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid State Lett., 7, A93-A96 (2004). https://doi.org/10.1149/1.1652421
- T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151, A838-A842 (2004). https://doi.org/10.1149/1.1739217
- L. Baggetto, E. J. M. Hensen, and P. H. L. Notten, In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes, Electrochim. Acta, 55, 7074-7079 (2010). https://doi.org/10.1016/j.electacta.2010.06.087
- B. Laforge, L. Levan-Jodin, R. Salot, and A. Billard, Study of germanium as electrode in thin-film battery, J. Electrochem. Soc., 155, A181-A188 (2008). https://doi.org/10.1149/1.2820666
- L. Baggetto, J. F. M. Oudenhoven, T. van Dongen, J. H. Klootwijk, M. Mulder, R. A. H. Niessen, M. H. J. M. de Croon, and P. H. L. Notten, On the electrochemistry of an anode stack for all-solidstate 3D-integrated batteries, J. Power Sources, 189, 402-410 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.076
- M.-H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall Effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 50, 9647- 9650 (2011). https://doi.org/10.1002/anie.201103062
- W. Liang, H. Yang, F. Fan, Y. Liu, X. H. Liu, J. Y. Huang, T. Zhu, and S. Zhang, Tough germanium nanoparticles under electrochemical cycling, ACS Nano, 7, 3427-3433 (2013). https://doi.org/10.1021/nn400330h
- X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522-1531 (2012). https://doi.org/10.1021/nn204476h
- H. Lee, M. G. Kim, C. H. Choi, Y.-K. Sun, C. S. Yoon, and J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithiumstorage material, J. Phys. Chem. B, 109, 20719-20723 (2005). https://doi.org/10.1021/jp052620y
- K. C. Klavetter, S. M. Wood, Y.-M. Lin, J. L. Snider, N. C. Davy, A. M. Chockla, D. K. Romanovicz, B. A. Korgel, J.-W. Lee, A. Heller, and C. B. Mullins, A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life, J. Power Sources, 238, 123-136 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.091
- H. Nakai, T. Kubota, A. Kita, and A. Kawashima, Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes, J. Electrochem. Soc., 158, A798-A801 (2011). https://doi.org/10.1149/1.3589300
- V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 28, 6175-6184 (2012). https://doi.org/10.1021/la300306v
- Y.-M. Lin, K. C. Klavetter, A. Heller, and C. Buddie Mullins, Storage of lithium in hydrothermally synthesized GeO2 nanoparticles, J. Phys. Chem. Lett., 4, 999-1004 (2013). https://doi.org/10.1021/jz4003058
-
Y. Son, M. Park, Y. Son, J.-S.Lee, J.-H. Jang, Y. Kim, and J. Cho, Quantum confinement and its related effects on the critical size of Ge
$O_2$ nanoparticles anodes for lithium batteries, NanoLett., DOI:10.1021/nl404466v. - Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei, and H. S. Kang, Tetragonal phase germanium nanocrystals in lithium ion batteries, ACS Nano, 7, 9075-9084 (2013). https://doi.org/10.1021/nn403674z
- N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes, Appl. Phys. Lett., 100, 083111 (2012). https://doi.org/10.1063/1.3689781
- N. G. Rudawski, B. R. Yates, M. R. Holzworth, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J. Power Sources, 223, 336-340 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.056
- M.-H. Park, K. Kim, J. Kim, and J. Cho, Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies, Adv. Mater., 22, 415-418 (2010). https://doi.org/10.1002/adma.200901846
- L. C. Yang, Q. S. Gao, L. Li, Y. Tang, and Y. P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemicalreaction,Electrochem. Commun., 12, 418-421 (2010). https://doi.org/10.1016/j.elecom.2010.01.008
- X.-L. Wang, W.-Q. Han, H. Chen, J. Bai, T. A. Tyson, X.-Q. Yu, X.-J. Wang, and X.-Q. Yang, Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life, J. Am. Chem. Soc., 133, 20692-20695 (2011). https://doi.org/10.1021/ja208880f
- T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha, D. K. Yi, J.-M.Choi, H. Chang, Y.-M.Choi, and U. Paik, A Ge inverse opal with porous walls as an anode for lithium ion batteries, Energy Environ. Sci., 5, 9028-9033 (2012). https://doi.org/10.1039/c2ee22358a
- X. Liu, J. Zhao, J. Hao, B.-L. Su, and Y. Li, 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties, J. Mater. Chem. A, 1, 1507615081 (2013).
- C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, NanoLett., 8, 307-309 (2011).
- A. M. Chockla, K. C. Klavetter, C. B. Mullins, and B. A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 4, 4658-4664 (2012). https://doi.org/10.1021/am3010253
- J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage, NanoLett., 12, 4617-4623 (2012). https://doi.org/10.1021/nl301912f
- E. Mullane, T. Kennedy, H. Geaney, C. Dickinson, and K. M. Ryan, Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling, Chem. Mater., 25, 1816-1822 (2013). https://doi.org/10.1021/cm400367v
- S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
- C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
- J. Cheng and J. Du, Facile synthesis of germanium-graphenenano composites and their application as anode materials for lithium ion batteries, Crys. Eng. Comm., 14, 397-400 (2012). https://doi.org/10.1039/c1ce06251d
- J.-G. Ren, Q.-H. Wu, H. Tang, G. Hong, W. Zhang, and S.-T. Lee, Germanium-graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A, 1, 1821-1826 (2013). https://doi.org/10.1039/c2ta01286c
- A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries, J. Phys. Chem. C, 116, 11917-11923 (2012). https://doi.org/10.1021/jp302344b
- C. H. Kim, H. S. Im, Y. J. Cho, C. S. Jung, D. M. Jang, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C.-W. Lee, and J. Park, Highyield gas-phase photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries, J. Phys. Chem. C, 116, 26190-26196 (2012). https://doi.org/10.1021/jp308852g
-
D. Lv, M. L. Gordin, R. Yi, T. Xu, J. Song, Y.-B. Jiang, D. Choi, and D. Wang, GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization for
$Li_2O$ along with improved rate performance, Adv. Funct. Mater., DOI: 10.1002/adfm.201301882. - L. Li, K. H. Seng, C. Feng, Z. Chen, H. K. Liu, and Z. Guo, Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A, 1, 7666-7672 (2013). https://doi.org/10.1039/c3ta11381g
- Z. Chen, Y. Yan, S. Xin, W. Li, J. Qu, W.-G. Guo, and W.-G. Song, Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries, J. Mater. Chem. A, 1, 11404-11409 (2013). https://doi.org/10.1039/c3ta12344h
- C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han, and F. Huang, In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A, 1, 8897-8902 (2013). https://doi.org/10.1039/c3ta11313b
- S. Jin, N. Li, H. Cui, and C. Wang, Growth of the vertically aligned graphene@amorphousGeOx sandwich nanoflakes and excellent Li storage properties, Nano Energy, 2, 1128-1136 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008
- H. Yin, J. Luo, P. Yang, and P. Yin, Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing, Nanoscale Res. Lett., 8, 422 (2013). https://doi.org/10.1186/1556-276X-8-422
- F.-W. Yuan, H.-J. Yang, and H.-Y. Tuan, Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization, ACS Nano, 6, 9932-9942 (2012). https://doi.org/10.1021/nn303519g
- K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Selfassembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery, Angew. Chem., 124, 5755-5759 (2012). https://doi.org/10.1002/ange.201201488
- G. Jo, I. Choi, H. Ahn, and M. J. Park, Binder-free Ge nanoparticles- carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability, Chem. Commun., 48, 3987-3989 (2012). https://doi.org/10.1039/c2cc30294b
- D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 134, 2512-2515 (2012). https://doi.org/10.1021/ja211266m
- D. Li, K. H. Seng, D. Shi, Z. Chen, H. K. Liu, and Z. Guo, A unique sandwich-structured C/Ge/graphenenanocomposite as an anode material for high power lithium ion batteries, J. Mater. Chem. A, 1, 14115-14121 (2013). https://doi.org/10.1039/c3ta13324a
- K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Catalytic role of Ge in highly reversible GeO2/Ge/C nanocompositeanode material for lithium batteries, NanoLett., 13, 1230-1236 (2013). https://doi.org/10.1021/nl304716e
- L. P. Tan, Z. Li, H. T. Tan, J. Zhu, X. Rui, Q. Yan, andH. H. Hng, Germanium nanowires-based carbon composite as anodes for lithium-ion batteries, J. Power Sources, 206, 253-258 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.064
- Y. Xiao, M. Cao, L. Ren, and C. Hu, Hierarchically porous germanium- modified carbon materials with enhanced lithium storage performance, Nanoscale, 4, 7469-7474 (2012). https://doi.org/10.1039/c2nr31533e
- R. A. DiLeo, M. J. Ganter, R. P. Raffaelle, and B. J. Landi, Germanium-single-wall carbon nanotube anodes for lithium ion batteries, J. Mater. Res., 25, 1441-1446 (2010). https://doi.org/10.1557/JMR.2010.0184
- R. A. DiLeo, S. Frisco, M. J. Ganter, R. E. Rogers, R. P. Raffaelle, and B. J. Landi, Hybrid germanium nanoparticle-single-wall carbon nanotube free-standing anodes for lithium ion batteries, J. Phys. Chem. C, 115, 22609-22614 (2011). https://doi.org/10.1021/jp205992w
- R. A. DiLeo, M. J. Ganter, M. N. Thone, M. W. Forney, J. W. Staub, R. E. Rogers, and B. J. Landi, Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes, Nano Energy, 2, 268-275 (2013). https://doi.org/10.1016/j.nanoen.2012.09.007
- B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009). https://doi.org/10.1039/b904116h
- S.-H. Woo, S. J. Choi, J.-H. Park, W.-S. Yoon, S. W. Hwang, and D. Whang, Entangled germanium nanowires and graphite nanofibers for the anode of lithium-ion batteries, J. Electrochem. Soc, 160, A112-A116 (2013).
- S. Li, C. Chen, K. Fu, L. Xue, C. Zhao, S. Zhang, Y. Hu, L. Zhou, and X. Zhang, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ion., 254, 17-26 (2014). https://doi.org/10.1016/j.ssi.2013.10.063
- M.-H. Kim, S.-H. Ahn, and J.-W. Park, Electrochemical characteristics of a Si/Ge multilayer anode for lithium-ion batteries, J. Korean Phys. Soc., 49, 1107-1110 (2006).
- C.-M. Hwang and J.-W. Park, Electrochemical properties of Si-Ge- Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries, Electrochim. Acta, 56, 6737-6747 (2011). https://doi.org/10.1016/j.electacta.2011.05.070
- C.-M. Hwang, and J.-W. Park, Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 196, 6772-6780 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.061
- T. Song, H. Cheng, H. Choi, J.-H. Lee, H. Han, D. H. Lee, D. S. Yoo, M.-S. Kwon, J.-M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y.-C. Chung, H. Kim, J. A. Rogers, and U. Paik, Si/Ge double-layered nanotube array as a lithium ion battery anode, ACS Nano, 6, 303-309 (2012). https://doi.org/10.1021/nn203572n
-
J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-
$Si_{1-x}Ge_x$ core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Power Sources, 208, 434-439 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.039 -
P. R. Abel, A. M. Chockla, Y.-M. Lin, V. C. Holmberg, J. T. Harris, B. A. Korgel, A. Heller, and C. B. Mullins, Nanostructured
$Si_{(1-x)}Ge_x$ for tunable thin film lithium-ion battery anodes, ACS Nano, 7, 2249-2257 (2013). https://doi.org/10.1021/nn3053632 - Y. Liu, X. H. Liu, B.-M. Nguyen, J. Yoo, J. P. Sullivan, S. T. Picraux, J. Y. Huang, and S. A. Dayeh,Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale, NanoLett., 13, 4876-4883 (2013). https://doi.org/10.1021/nl4027549
- J. Yu, N. Du, H. Zhang, and D. Yang, Synthesis of NixSiy-SiGe core-shell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries, RSC Adv., 3, 7713-7717 (2013). https://doi.org/10.1039/c3ra40232k
-
Q. Johnson, G. S. Smith, and D. Wood, The crystal structure of
$Li_{15}Ge_4$ , Acta Cryst., 18, 131-132 (1965). https://doi.org/10.1107/S0365110X65000257 - Y. Hwa, C.-M. Park, S. Yoon, and H-J. Sohn, The effect of Cu addition on Ge-based composite anode for Li-ion batteries, Electrochim. Acta, 55, 3324-3329 (2010). https://doi.org/10.1016/j.electacta.2010.01.071
- I. Seo and S. W. Martin, Structural properties of lithium thiogermanate thin film electrolytes grown by radio frequency sputtering, Inorg. Chem., 50, 2143-2150 (2011). https://doi.org/10.1021/ic101448m
- J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 22, 1511-1515 (2012). https://doi.org/10.1039/c1jm14430h
-
J. Feng, M. O. Lai, and L. Lu, Lithium storage capability of CuGe
$O_3$ nanorods, Mater. Res. Bull., 47, 1693-1696 (2012). https://doi.org/10.1016/j.materresbull.2012.03.034 - X. Zhao, C. Wang, D. Wang, H. Hahn, and M. Fichtner, Ge-Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries, Electrochem. Commun., 35, 116-119 (2013). https://doi.org/10.1016/j.elecom.2013.08.016
-
R. Alcantara, M. Tillard-Charbonnel, L. Spina, C. Belin, and J. L. Tirado, Electrochemical reactions of lithium with
$Li_2$ ZnGe and$Li_2$ ZnSi, Electrochim. Acta, 47, 1115-1120 (2002). https://doi.org/10.1016/S0013-4686(01)00817-9 -
Y. Kim, H. Hwang, K. Lawler, S. W. Martin, and J. Cho, Electrochemical behavior of Ge and Ge
$X_2$ (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochim. Acta, 53, 5058-5064 (2008). https://doi.org/10.1016/j.electacta.2007.12.015 -
C. H. Kim, Y. S. Jung, K. T. Lee, J. H. Ku, and S. M. Oh, The role ofin situ generatednano-sized metal particles on the coulombic efficiency of MGe
$O_3$ (M = Cu, Fe, and Co) electrodes, Electrochim. Acta, 54, 4371-4377 (2009). https://doi.org/10.1016/j.electacta.2009.03.009 - C.-M. Hwang and J.-W. Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries, Thin Solid Films, 518, 6590-6597 (2010). https://doi.org/10.1016/j.tsf.2010.03.045
- W. Li, Y.-X. Yin, S. Xin, W.-G. Song, and Y.-G. Guo, Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material, Energy Environ. Sci., 5, 8007-8013 (2012). https://doi.org/10.1039/c2ee21580b
- C. Yan, W. Xi, W. Si, J. Deng, and O. G. Schmidt, Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability, Adv. Mater., 25, 539-544 (2013). https://doi.org/10.1002/adma.201203458
- Y. J. Cho, H. S. Im, Y. Myung, C. H. Kim, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, S. H. Choo, M. S. Song, and W. I. Cho, Germanium sulfide (II and IV) nanoparticles for enhanced performance of lithium ion batteries, Chem. Commun., 49, 4661-4663 (2013). https://doi.org/10.1039/c3cc41853g
-
W. Li, X. Wang, B. Liu, S. Luo, Z. Liu, X. Hou, Q. Xiang, D. Chen, and G. Shen, Highly reversible lithium storage in hierarchical
$Ca_2Ge_7O_{16}$ nanowire arrays/carbon textile anodes, Chem.- Eur. J., 19, 8650-8656 (2013). https://doi.org/10.1002/chem.201300115 - S. Fan, L. Y. Lim, Y. Y. Tay, S. S. Pramana, X. Rui, M. K. Samani, Q. Yan, B. K. Tay, M. F. Toney, and H. H. Hng, Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties, J. Mater. Chem. A, 1, 14577-14585 (2013). https://doi.org/10.1039/c3ta13315j
- Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, and W. I. Cho, Germaniumtin alloy nanocrystals for high-performance lithium ion batteries, Phys. Chem. Chem. Phys., 15, 11691-11695 (2013). https://doi.org/10.1039/c3cp51366a
Cited by
- Quasi-perpetual discharge behaviour in p-type Ge–air batteries vol.16, pp.41, 2014, https://doi.org/10.1039/C4CP02134G
- Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries vol.18, pp.4, 2015, https://doi.org/10.5229/JKES.2015.18.4.161
- High-Power-Density Semiconductor-Air Batteries Based on P-Type Germanium with Different Crystal Orientations vol.3, pp.2, 2016, https://doi.org/10.1002/celc.201500488
- Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries vol.3, pp.4, 2015, https://doi.org/10.1039/C4TA04350B
- Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.07
- Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries vol.29, pp.6, 2014, https://doi.org/10.14478/ace.2018.1092
- Effects of lithium on the electronic properties of porous Ge as anode material for batteries vol.41, pp.31, 2014, https://doi.org/10.1002/jcc.26421
- Facile Synthesis Sandwich-Structured Ge/NrGO Nanocomposite as Anodes for High-Performance Lithium-Ion Batteries vol.11, pp.12, 2014, https://doi.org/10.3390/cryst11121582