DOI QR코드

DOI QR Code

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries

다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극

  • Ocon, Joey D. (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jae Kwang (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory (ERTL), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST))
  • 조이 오콘 (광주과학기술원 환경공학부 전기화학 반응 및 기술실험실) ;
  • 이재광 (광주과학기술원 환경공학부 전기화학 반응 및 기술실험실) ;
  • 이재영 (광주과학기술원 환경공학부 전기화학 반응 및 기술실험실)
  • Received : 2014.01.23
  • Published : 2014.02.10

Abstract

Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.

리튬이온 배터리는 전기화학 에너지 저장 및 변환 기기에서 가장 높은 수준의 기술력을 기반으로 개발된 셀이며, 여전히 높은 에너지 밀도와 충방전 안정성이 높아서 가장 매력적인 배터리의 부류로서 평가받고 있다. 최근 급속한 대형 에너지 저장 응용시스템의 개발이 이루어지면서 기존의 그래파이트 전극을 대체하기 위한 새로운 음극물질의 개발이 요구되고 있다. 게르마늄과 실리콘은 이론적 에너지 용량이 높아서 다음 세대 리튬 배터리의 적합한 물질로 평가받고 있으며, 특히 게르마늄은 실리콘에 비해 충방전에 따른 부피변화가 상대적으로 적고, 리튬이온의 동력학 거동이 용이하며, 높은 전기전도도 특성이 있다. 본 총설에서는 우선 리튬이온 배터리의 기본 원리를 소개하고, 배터리 특성을 최대한 발휘할 수 있는 이상적인 음극 물질의 구조와 특성을 살펴보고자 한다. 다음 세대 음극물질로 고려되고 있는 게르마늄 복합체가 어떻게 현재의 리튬 배터리를 개선할 수 있을지를 논의하려고 한다. 그리고 최근 시도되고 있는 연구동향에 대한 소개를 끝으로 리튬이온 배터리의 고에너지 밀도화에 대한 참고문헌이 될 수 있기를 바란다.

Keywords

References

  1. A. W. Fairhall, Accumulation of fossil $CO_2$ in the atmosphere and the sea, Nature, 245, 20-23 (1973). https://doi.org/10.1038/245020a0
  2. C. Rosenzweig and M. L. Parry, Potential impact of climate change on world food supply, Nature, 367, 133-138 (1994). https://doi.org/10.1038/367133a0
  3. U. R. Sumaila, W. W. L. Cheung, V. W. Y. Lam, D. Pauly, and S. Herrick, Climate change impacts on the biophysics and economics of world fisheries, Nat. Clim. Chang., 1, 449-456 (2011). https://doi.org/10.1038/nclimate1301
  4. United Nations World Commission on Environment and Development, Our common future [Brundtland Report], Oxford University Press, (1987).
  5. G. Boyle, Renewable Energy: Power for a Sustainable Future, 3rd ed., Oxford University Press, USA (2012).
  6. B. Dunn, H. Kamath, and J.-M Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334, 928-935 (2011). https://doi.org/10.1126/science.1212741
  7. M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
  8. J.-M. Tarascon and M. Armand, Issues and challenges facing the rechargeablelithium batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  9. J. B. Goodenough and K.-S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135, 1167-1176 (2013). https://doi.org/10.1021/ja3091438
  10. X.-L. Wu, Y.-G. Guo, and L.-J. Wan, Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem.-Asian J., 8, 1948-1958 (2013). https://doi.org/10.1002/asia.201300279
  11. K. T. Lee and J. Cho, Role of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, 6, 28-41 (2011). https://doi.org/10.1016/j.nantod.2010.11.002
  12. J. Jiang, Y. Li, J. Liu, and X. Huang, Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 3, 45-58 (2011). https://doi.org/10.1039/c0nr00472c
  13. R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T.-M.Lu, P. N. Kumta, and N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5, 2236-2242 (2009). https://doi.org/10.1002/smll.200900382
  14. N. Zhao, L. Fu, L. Yang, T. Zhang, G. Wang, Y. Wu, and T. van Ree, Nanostructured anode materials for Li-ion batteries, Pure Appl. Chem., 80, 2283-2295 (2008).
  15. N. Nitta and G. Yushin, High-capacity anode materials for lithiumion batteries: Choice of elements and structures for active particles, Part. Part. Syst. Charact., DOI: 10.1002/ppsc.201300231.
  16. M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chem. Rev., 113, 5364-5457 (2013). https://doi.org/10.1021/cr3001884
  17. T. D. Bogard, A. M. Chockla, and B. A. Korgel, High capacity lithium ion battery anodes of silicon and germanium, Curr. Opin. Chem. Eng., 2, 286-293 (2013). https://doi.org/10.1016/j.coche.2013.07.001
  18. Q. Zhang, E. Uchaker, S. L. Candelaria, and G. Cao, Nanomaterials for energy conversion and storage, Chem. Soc. Rev., 42, 3127-3171 (2013). https://doi.org/10.1039/c3cs00009e
  19. H. Ikeda, T. Saito, H. Tamura, in Proc. Manganese Dioxide Symp. (eds A. Kozawa, R. H. Brodd), IC sample office, Cleveland, OH, 1975, Vol 1.
  20. M. S. Whittingham, Chalcogenide battery, US Patent 4009052.
  21. B. M. L. Rao, R. W. Francis, and H. A. Christopher, Lithiumaluminumelectrode, J. Electrochem. Soc., 124, 1490-1492 (1977). https://doi.org/10.1149/1.2133098
  22. B. C. H. Steele, Fast ion transport in solids (ed. W. Van Gool), North-Holland Amsterdam, (1973).
  23. A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed., 51, 5798-5800 (2012). https://doi.org/10.1002/anie.201105006
  24. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCo$O_2$ (0 < x $\leq$ 1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 15, 783-789 (1980). https://doi.org/10.1016/0025-5408(80)90012-4
  25. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mater. Res. Bull., 18, 461-472 (1983). https://doi.org/10.1016/0025-5408(83)90138-1
  26. J. B. Goodenough, K. Mizushima, P. J. Wiseman, Electrochemical cell and method of making ion conductors for said cell, EP0017400B1 (1984).
  27. D. W. Murphy, F. J. DiSalvo, J. N. Carides, and J. V. Waszczak, Topochemical reactions of rutile related structures with lithium, Mater. Res. Bull., 13, 1395-1402 (1978). https://doi.org/10.1016/0025-5408(78)90131-9
  28. M. Lazzari and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc., 127, 773-774 (1980). https://doi.org/10.1149/1.2129753
  29. W. van Schalkwijk and B. Scrosati, Advances in Lithium-ion batteries, Kluwer Academic/Plenum, Boston, USA (2004).
  30. N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, 9994-10024 (2012). https://doi.org/10.1002/anie.201201429
  31. J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, J. Electrochem. Soc., 151, A698-A702 (2004). https://doi.org/10.1149/1.1697412
  32. S. Yoon, C.-M. Park, and H.-J. Sohn, Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries, Electrochem. Solid State Lett., 11, A42-A45 (2008). https://doi.org/10.1149/1.2836481
  33. L. Baggetto and P. H. L. Notten, Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study, J. Electrochem. Soc., 156, A169-A175 (2009). https://doi.org/10.1149/1.3055984
  34. X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, and J. Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Adv. Energy Mater., 2, 722-741 (2012). https://doi.org/10.1002/aenm.201200024
  35. X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu, and J. Y. Huang, Reversible nanopore formation in Ge nanowires during lithiationdelithiation cycling: An in situ transmission electron microscopy study, NanoLett., 11, 3991-3997 (2011). https://doi.org/10.1021/nl2024118
  36. X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries, Energy Environ. Sci., 4, 3844- 3860 (2011). https://doi.org/10.1039/c1ee01918j
  37. X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, and J. Y. Huang, Anisotrophic swelling and fracture of silicon nanowires during lithiation, NanoLett., 11, 3312-3318 (2011). https://doi.org/10.1021/nl201684d
  38. X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J.-H. Cho, S. A. Dayeh, S. T. Picraux, J. P. Sullivan, S. X. Mao, Z. Z. Ye, and J. Y. Huang, Ultrafast electrochemical lithiation of individual Si nanowire anodes, NanoLett., 11, 2251-2258 (2011). https://doi.org/10.1021/nl200412p
  39. X. H. Liu, L. Zhong, L. Q. Zhang, A. Kushima, S. X. Mao, J. Li, Z. Z. Ye, J. P. Sullivan, and J. Y. Huang, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging, Appl. Phys. Lett., 98, 183107 (2011). https://doi.org/10.1063/1.3585655
  40. M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid State Lett., 7, A93-A96 (2004). https://doi.org/10.1149/1.1652421
  41. T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151, A838-A842 (2004). https://doi.org/10.1149/1.1739217
  42. L. Baggetto, E. J. M. Hensen, and P. H. L. Notten, In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes, Electrochim. Acta, 55, 7074-7079 (2010). https://doi.org/10.1016/j.electacta.2010.06.087
  43. B. Laforge, L. Levan-Jodin, R. Salot, and A. Billard, Study of germanium as electrode in thin-film battery, J. Electrochem. Soc., 155, A181-A188 (2008). https://doi.org/10.1149/1.2820666
  44. L. Baggetto, J. F. M. Oudenhoven, T. van Dongen, J. H. Klootwijk, M. Mulder, R. A. H. Niessen, M. H. J. M. de Croon, and P. H. L. Notten, On the electrochemistry of an anode stack for all-solidstate 3D-integrated batteries, J. Power Sources, 189, 402-410 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.076
  45. M.-H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall Effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 50, 9647- 9650 (2011). https://doi.org/10.1002/anie.201103062
  46. W. Liang, H. Yang, F. Fan, Y. Liu, X. H. Liu, J. Y. Huang, T. Zhu, and S. Zhang, Tough germanium nanoparticles under electrochemical cycling, ACS Nano, 7, 3427-3433 (2013). https://doi.org/10.1021/nn400330h
  47. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522-1531 (2012). https://doi.org/10.1021/nn204476h
  48. H. Lee, M. G. Kim, C. H. Choi, Y.-K. Sun, C. S. Yoon, and J. Cho, Surface-stabilized amorphous germanium nanoparticles for lithiumstorage material, J. Phys. Chem. B, 109, 20719-20723 (2005). https://doi.org/10.1021/jp052620y
  49. K. C. Klavetter, S. M. Wood, Y.-M. Lin, J. L. Snider, N. C. Davy, A. M. Chockla, D. K. Romanovicz, B. A. Korgel, J.-W. Lee, A. Heller, and C. B. Mullins, A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life, J. Power Sources, 238, 123-136 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.091
  50. H. Nakai, T. Kubota, A. Kita, and A. Kawashima, Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes, J. Electrochem. Soc., 158, A798-A801 (2011). https://doi.org/10.1149/1.3589300
  51. V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 28, 6175-6184 (2012). https://doi.org/10.1021/la300306v
  52. Y.-M. Lin, K. C. Klavetter, A. Heller, and C. Buddie Mullins, Storage of lithium in hydrothermally synthesized GeO2 nanoparticles, J. Phys. Chem. Lett., 4, 999-1004 (2013). https://doi.org/10.1021/jz4003058
  53. Y. Son, M. Park, Y. Son, J.-S.Lee, J.-H. Jang, Y. Kim, and J. Cho, Quantum confinement and its related effects on the critical size of Ge$O_2$ nanoparticles anodes for lithium batteries, NanoLett., DOI:10.1021/nl404466v.
  54. Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei, and H. S. Kang, Tetragonal phase germanium nanocrystals in lithium ion batteries, ACS Nano, 7, 9075-9084 (2013). https://doi.org/10.1021/nn403674z
  55. N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes, Appl. Phys. Lett., 100, 083111 (2012). https://doi.org/10.1063/1.3689781
  56. N. G. Rudawski, B. R. Yates, M. R. Holzworth, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J. Power Sources, 223, 336-340 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.056
  57. M.-H. Park, K. Kim, J. Kim, and J. Cho, Flexible dimensional control of high-capacity Li-ion-battery anodes: From 0D hollow to 3D porous germanium nanoparticle assemblies, Adv. Mater., 22, 415-418 (2010). https://doi.org/10.1002/adma.200901846
  58. L. C. Yang, Q. S. Gao, L. Li, Y. Tang, and Y. P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemicalreaction,Electrochem. Commun., 12, 418-421 (2010). https://doi.org/10.1016/j.elecom.2010.01.008
  59. X.-L. Wang, W.-Q. Han, H. Chen, J. Bai, T. A. Tyson, X.-Q. Yu, X.-J. Wang, and X.-Q. Yang, Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life, J. Am. Chem. Soc., 133, 20692-20695 (2011). https://doi.org/10.1021/ja208880f
  60. T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha, D. K. Yi, J.-M.Choi, H. Chang, Y.-M.Choi, and U. Paik, A Ge inverse opal with porous walls as an anode for lithium ion batteries, Energy Environ. Sci., 5, 9028-9033 (2012). https://doi.org/10.1039/c2ee22358a
  61. X. Liu, J. Zhao, J. Hao, B.-L. Su, and Y. Li, 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties, J. Mater. Chem. A, 1, 1507615081 (2013).
  62. C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, NanoLett., 8, 307-309 (2011).
  63. A. M. Chockla, K. C. Klavetter, C. B. Mullins, and B. A. Korgel, Solution-grown germanium nanowire anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 4, 4658-4664 (2012). https://doi.org/10.1021/am3010253
  64. J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage, NanoLett., 12, 4617-4623 (2012). https://doi.org/10.1021/nl301912f
  65. E. Mullane, T. Kennedy, H. Geaney, C. Dickinson, and K. M. Ryan, Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling, Chem. Mater., 25, 1816-1822 (2013). https://doi.org/10.1021/cm400367v
  66. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  67. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  68. J. Cheng and J. Du, Facile synthesis of germanium-graphenenano composites and their application as anode materials for lithium ion batteries, Crys. Eng. Comm., 14, 397-400 (2012). https://doi.org/10.1039/c1ce06251d
  69. J.-G. Ren, Q.-H. Wu, H. Tang, G. Hong, W. Zhang, and S.-T. Lee, Germanium-graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A, 1, 1821-1826 (2013). https://doi.org/10.1039/c2ta01286c
  70. A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries, J. Phys. Chem. C, 116, 11917-11923 (2012). https://doi.org/10.1021/jp302344b
  71. C. H. Kim, H. S. Im, Y. J. Cho, C. S. Jung, D. M. Jang, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C.-W. Lee, and J. Park, Highyield gas-phase photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries, J. Phys. Chem. C, 116, 26190-26196 (2012). https://doi.org/10.1021/jp308852g
  72. D. Lv, M. L. Gordin, R. Yi, T. Xu, J. Song, Y.-B. Jiang, D. Choi, and D. Wang, GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization for $Li_2O$ along with improved rate performance, Adv. Funct. Mater., DOI: 10.1002/adfm.201301882.
  73. L. Li, K. H. Seng, C. Feng, Z. Chen, H. K. Liu, and Z. Guo, Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A, 1, 7666-7672 (2013). https://doi.org/10.1039/c3ta11381g
  74. Z. Chen, Y. Yan, S. Xin, W. Li, J. Qu, W.-G. Guo, and W.-G. Song, Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries, J. Mater. Chem. A, 1, 11404-11409 (2013). https://doi.org/10.1039/c3ta12344h
  75. C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han, and F. Huang, In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A, 1, 8897-8902 (2013). https://doi.org/10.1039/c3ta11313b
  76. S. Jin, N. Li, H. Cui, and C. Wang, Growth of the vertically aligned graphene@amorphousGeOx sandwich nanoflakes and excellent Li storage properties, Nano Energy, 2, 1128-1136 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008
  77. H. Yin, J. Luo, P. Yang, and P. Yin, Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing, Nanoscale Res. Lett., 8, 422 (2013). https://doi.org/10.1186/1556-276X-8-422
  78. F.-W. Yuan, H.-J. Yang, and H.-Y. Tuan, Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization, ACS Nano, 6, 9932-9942 (2012). https://doi.org/10.1021/nn303519g
  79. K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Selfassembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery, Angew. Chem., 124, 5755-5759 (2012). https://doi.org/10.1002/ange.201201488
  80. G. Jo, I. Choi, H. Ahn, and M. J. Park, Binder-free Ge nanoparticles- carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability, Chem. Commun., 48, 3987-3989 (2012). https://doi.org/10.1039/c2cc30294b
  81. D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 134, 2512-2515 (2012). https://doi.org/10.1021/ja211266m
  82. D. Li, K. H. Seng, D. Shi, Z. Chen, H. K. Liu, and Z. Guo, A unique sandwich-structured C/Ge/graphenenanocomposite as an anode material for high power lithium ion batteries, J. Mater. Chem. A, 1, 14115-14121 (2013). https://doi.org/10.1039/c3ta13324a
  83. K. H. Seng, M.-H. Park, Z. P. Guo, H. K. Liu, and J. Cho, Catalytic role of Ge in highly reversible GeO2/Ge/C nanocompositeanode material for lithium batteries, NanoLett., 13, 1230-1236 (2013). https://doi.org/10.1021/nl304716e
  84. L. P. Tan, Z. Li, H. T. Tan, J. Zhu, X. Rui, Q. Yan, andH. H. Hng, Germanium nanowires-based carbon composite as anodes for lithium-ion batteries, J. Power Sources, 206, 253-258 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.064
  85. Y. Xiao, M. Cao, L. Ren, and C. Hu, Hierarchically porous germanium- modified carbon materials with enhanced lithium storage performance, Nanoscale, 4, 7469-7474 (2012). https://doi.org/10.1039/c2nr31533e
  86. R. A. DiLeo, M. J. Ganter, R. P. Raffaelle, and B. J. Landi, Germanium-single-wall carbon nanotube anodes for lithium ion batteries, J. Mater. Res., 25, 1441-1446 (2010). https://doi.org/10.1557/JMR.2010.0184
  87. R. A. DiLeo, S. Frisco, M. J. Ganter, R. E. Rogers, R. P. Raffaelle, and B. J. Landi, Hybrid germanium nanoparticle-single-wall carbon nanotube free-standing anodes for lithium ion batteries, J. Phys. Chem. C, 115, 22609-22614 (2011). https://doi.org/10.1021/jp205992w
  88. R. A. DiLeo, M. J. Ganter, M. N. Thone, M. W. Forney, J. W. Staub, R. E. Rogers, and B. J. Landi, Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes, Nano Energy, 2, 268-275 (2013). https://doi.org/10.1016/j.nanoen.2012.09.007
  89. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009). https://doi.org/10.1039/b904116h
  90. S.-H. Woo, S. J. Choi, J.-H. Park, W.-S. Yoon, S. W. Hwang, and D. Whang, Entangled germanium nanowires and graphite nanofibers for the anode of lithium-ion batteries, J. Electrochem. Soc, 160, A112-A116 (2013).
  91. S. Li, C. Chen, K. Fu, L. Xue, C. Zhao, S. Zhang, Y. Hu, L. Zhou, and X. Zhang, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ion., 254, 17-26 (2014). https://doi.org/10.1016/j.ssi.2013.10.063
  92. M.-H. Kim, S.-H. Ahn, and J.-W. Park, Electrochemical characteristics of a Si/Ge multilayer anode for lithium-ion batteries, J. Korean Phys. Soc., 49, 1107-1110 (2006).
  93. C.-M. Hwang and J.-W. Park, Electrochemical properties of Si-Ge- Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries, Electrochim. Acta, 56, 6737-6747 (2011). https://doi.org/10.1016/j.electacta.2011.05.070
  94. C.-M. Hwang, and J.-W. Park, Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 196, 6772-6780 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.061
  95. T. Song, H. Cheng, H. Choi, J.-H. Lee, H. Han, D. H. Lee, D. S. Yoo, M.-S. Kwon, J.-M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y.-C. Chung, H. Kim, J. A. Rogers, and U. Paik, Si/Ge double-layered nanotube array as a lithium ion battery anode, ACS Nano, 6, 303-309 (2012). https://doi.org/10.1021/nn203572n
  96. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-$Si_{1-x}Ge_x$ core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Power Sources, 208, 434-439 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.039
  97. P. R. Abel, A. M. Chockla, Y.-M. Lin, V. C. Holmberg, J. T. Harris, B. A. Korgel, A. Heller, and C. B. Mullins, Nanostructured $Si_{(1-x)}Ge_x$ for tunable thin film lithium-ion battery anodes, ACS Nano, 7, 2249-2257 (2013). https://doi.org/10.1021/nn3053632
  98. Y. Liu, X. H. Liu, B.-M. Nguyen, J. Yoo, J. P. Sullivan, S. T. Picraux, J. Y. Huang, and S. A. Dayeh,Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale, NanoLett., 13, 4876-4883 (2013). https://doi.org/10.1021/nl4027549
  99. J. Yu, N. Du, H. Zhang, and D. Yang, Synthesis of NixSiy-SiGe core-shell nanowire arrays on Ni foam as a high-performance anode for Li-ion batteries, RSC Adv., 3, 7713-7717 (2013). https://doi.org/10.1039/c3ra40232k
  100. Q. Johnson, G. S. Smith, and D. Wood, The crystal structure of $Li_{15}Ge_4$, Acta Cryst., 18, 131-132 (1965). https://doi.org/10.1107/S0365110X65000257
  101. Y. Hwa, C.-M. Park, S. Yoon, and H-J. Sohn, The effect of Cu addition on Ge-based composite anode for Li-ion batteries, Electrochim. Acta, 55, 3324-3329 (2010). https://doi.org/10.1016/j.electacta.2010.01.071
  102. I. Seo and S. W. Martin, Structural properties of lithium thiogermanate thin film electrolytes grown by radio frequency sputtering, Inorg. Chem., 50, 2143-2150 (2011). https://doi.org/10.1021/ic101448m
  103. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 22, 1511-1515 (2012). https://doi.org/10.1039/c1jm14430h
  104. J. Feng, M. O. Lai, and L. Lu, Lithium storage capability of CuGe$O_3$ nanorods, Mater. Res. Bull., 47, 1693-1696 (2012). https://doi.org/10.1016/j.materresbull.2012.03.034
  105. X. Zhao, C. Wang, D. Wang, H. Hahn, and M. Fichtner, Ge-Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries, Electrochem. Commun., 35, 116-119 (2013). https://doi.org/10.1016/j.elecom.2013.08.016
  106. R. Alcantara, M. Tillard-Charbonnel, L. Spina, C. Belin, and J. L. Tirado, Electrochemical reactions of lithium with $Li_2$ZnGe and $Li_2$ZnSi, Electrochim. Acta, 47, 1115-1120 (2002). https://doi.org/10.1016/S0013-4686(01)00817-9
  107. Y. Kim, H. Hwang, K. Lawler, S. W. Martin, and J. Cho, Electrochemical behavior of Ge and Ge$X_2$ (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochim. Acta, 53, 5058-5064 (2008). https://doi.org/10.1016/j.electacta.2007.12.015
  108. C. H. Kim, Y. S. Jung, K. T. Lee, J. H. Ku, and S. M. Oh, The role ofin situ generatednano-sized metal particles on the coulombic efficiency of MGe$O_3$ (M = Cu, Fe, and Co) electrodes, Electrochim. Acta, 54, 4371-4377 (2009). https://doi.org/10.1016/j.electacta.2009.03.009
  109. C.-M. Hwang and J.-W. Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries, Thin Solid Films, 518, 6590-6597 (2010). https://doi.org/10.1016/j.tsf.2010.03.045
  110. W. Li, Y.-X. Yin, S. Xin, W.-G. Song, and Y.-G. Guo, Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material, Energy Environ. Sci., 5, 8007-8013 (2012). https://doi.org/10.1039/c2ee21580b
  111. C. Yan, W. Xi, W. Si, J. Deng, and O. G. Schmidt, Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability, Adv. Mater., 25, 539-544 (2013). https://doi.org/10.1002/adma.201203458
  112. Y. J. Cho, H. S. Im, Y. Myung, C. H. Kim, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, S. H. Choo, M. S. Song, and W. I. Cho, Germanium sulfide (II and IV) nanoparticles for enhanced performance of lithium ion batteries, Chem. Commun., 49, 4661-4663 (2013). https://doi.org/10.1039/c3cc41853g
  113. W. Li, X. Wang, B. Liu, S. Luo, Z. Liu, X. Hou, Q. Xiang, D. Chen, and G. Shen, Highly reversible lithium storage in hierarchical $Ca_2Ge_7O_{16}$ nanowire arrays/carbon textile anodes, Chem.- Eur. J., 19, 8650-8656 (2013). https://doi.org/10.1002/chem.201300115
  114. S. Fan, L. Y. Lim, Y. Y. Tay, S. S. Pramana, X. Rui, M. K. Samani, Q. Yan, B. K. Tay, M. F. Toney, and H. H. Hng, Rapid fabrication of a novel Sn-Ge alloy: Structure-property relationship and its enhanced lithium storage properties, J. Mater. Chem. A, 1, 14577-14585 (2013). https://doi.org/10.1039/c3ta13315j
  115. Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, and W. I. Cho, Germaniumtin alloy nanocrystals for high-performance lithium ion batteries, Phys. Chem. Chem. Phys., 15, 11691-11695 (2013). https://doi.org/10.1039/c3cp51366a

Cited by

  1. Quasi-perpetual discharge behaviour in p-type Ge–air batteries vol.16, pp.41, 2014, https://doi.org/10.1039/C4CP02134G
  2. Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries vol.18, pp.4, 2015, https://doi.org/10.5229/JKES.2015.18.4.161
  3. High-Power-Density Semiconductor-Air Batteries Based on P-Type Germanium with Different Crystal Orientations vol.3, pp.2, 2016, https://doi.org/10.1002/celc.201500488
  4. Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries vol.3, pp.4, 2015, https://doi.org/10.1039/C4TA04350B
  5. Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.07
  6. Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries vol.29, pp.6, 2014, https://doi.org/10.14478/ace.2018.1092
  7. Effects of lithium on the electronic properties of porous Ge as anode material for batteries vol.41, pp.31, 2014, https://doi.org/10.1002/jcc.26421
  8. Facile Synthesis Sandwich-Structured Ge/NrGO Nanocomposite as Anodes for High-Performance Lithium-Ion Batteries vol.11, pp.12, 2014, https://doi.org/10.3390/cryst11121582