DOI QR코드

DOI QR Code

Comparison of the Medication Effects between Milnacipran and Pregabalin in Fibromyalgia Syndrome Using a Functional MRI: a Follow-up Study

섬유근통 환자에 대한 Milnacipran과 Pregabalin 약물치료에 대한 기능적 자기공명영상에서의 후속 영향 비교

  • Kang, Min Jae (Dept. of Health Science and Technology, Inje Univ.) ;
  • Mun, Chi-Woong (Dept. of Health Science and Technology, Inje Univ.) ;
  • Lee, Young Ho (Center for Neuroscience Imaging Research, Institute for Basic Science) ;
  • Kim, Seong-Ho (Dept. of Internal Medicine, Inje Univ., Heaundae Paik Hospital)
  • 강민재 (인제대학교 융합의과학과) ;
  • 문치웅 (인제대학교 융합의과학과) ;
  • 이영호 (성균관대학교 기초 과학연구원 뇌과학이미징연구단) ;
  • 김성호 (인제대학교 해운대 백병원 류마티스내과)
  • Received : 2014.08.22
  • Accepted : 2014.10.27
  • Published : 2014.12.31

Abstract

Purpose : In this study, the medication effects of Milnacipran and Pregabalin, as well known as fibromyalgia treatment medicine, in fibromyalgia syndrome patients were compared through the change of BOLD signal in pain related functional MRI. Materials and Methods: Twenty fibromyalgia syndrome patients were enrolled in this study and they were separated into two groups according to the treatment medicine: 10 Milnacipran (MLN) treatment group and 7 Pregabalin (PGB) treatment group. For accurate diagnosis, all patients underwent several clinical tests. Pre-treated and post-treated fMRI image with block-designed pressure-pain stimulation for each group were obtained to conduct the statistical analysis of paired t-test and two sample t-test. All statistical significant level was less than 0.05. Results: In clinical tests, the clinical scores of the two groups were not significantly different at pre-treatment stage. But, PGB treatment group had lower Widespread Pain Index (WPI) and Brief Fatigue Inventory (BFI) score than those of MLN treatment group at post-treatment stage. In functional image analysis, BOLD signal of PGB treatment group was higher BOLD signal at several regions including anterior cingulate and insula than MLN treatment group at post-treatment stage. Also, paired t-test values of the BOLD signal in MLN group decreased in several regions including insula and thalamus as known as 'pain network'. In contrast, size and number of regions in which the BOLD signal decreased in PGB treatment group were smaller than those of MLN treatment group. Conclusion: This study showed that MLN group and PGB group have different medication effects. It is not surprising that MLN and PGB have not the same therapeutic effects since these two drugs have different medicinal mechanisms such as antidepressants and anti-seizure medication, respectively, and different detailed target of fibromyalgia syndrome treatment. Therefore, it is difficult to say which medicine will work better in this study.

목적 : 섬유근통 증후군의 치료에 주로 쓰이는 두 계열의 약물인 Milnacipran (이하 MLN)과 Pregabalin (이하 PGB)의 환자 투여에 따른 약물 치료 효과를 뇌 활성도 변화의 비교 분석을 통해 비교하였다. 대상 및 방법 : 섬유근통 증후군 환자 20명을 대상으로 진행하였으며 20명의 환자 중 약물 치료 군에 따라 MLN 치료군 10명과 PGB 치료군 7명으로 분류하였다. 모든 환자군은 섬유근통 증후군 이외의 요인을 배제하기 위해 정신건강 의학과적 평가를 통해 선별된 후 섬유근통 진단을 위한 임상적 평가가 진행 되었다. 기능적 자기공명영상의 촬영 시 엄지손가락에 블록 형태의 압통 자극을 가해 주었고 영상은 약물 치료 전과 약물 치료 후에 각각 획득하였다. 영상 획득 후 일련의 전처리 과정을 거쳐 약물 치료 전후의 자기공명 혈중산소치의존 (Blood Oxygen Level Dependent, 이하 BOLD) 신호 비교를 위한 대응표본 t-검정과 두 표본 t-검정을 실시 하였다. 결과 : 임상적 평가에 있어 약물 치료 전에는 두 그룹간에 유의한 차이가 나지 않았으며 약물 치료 후 전신통증지수 (Widespread Pain Index, WPI)와 대상자 스스로 피로도를 평가하는 검사 (Brief Fatigue Inventory, BFI)에서 PGB군에 유의한 수준으로 낮게 나타났다. 기능적 영상 분석에 있어 약물 치료 후의 영상 비교 결과 앞 띠이랑과 대뇌섬을 포함한 영역에서 PGB군이 높은 활성도를 보였다. 또한 약물 치료 전후 효과 비교에서는 MLN군에서 대뇌섬, 시상을 포함한 영역에서 치료 후 BOLD 신호가 감소하는 경향을 볼 수 있었지만 PGB군에서는 MLN에 비해 감소된 영역의 수와 크기가 비교적 작게 나타났다. 결론 : 전체 결과에서 두 치료군 모두 증상이 호전되는 경향을 나타냈으나 임상적 평가와 기능적 영상 평가에서 서로 다른 경향을 나타내었다. 이는 두 약물 치료 기전과 세부 치료 목적이 다르고, 전체 환자 수의 부족으로 인한 임상적 평가와의 낮은 상관관계에 의한 영향으로 보이며 이러한 영향을 최소화 시킨다면 두 약물 간의 정확한 치료 효과 비교를 할 수 있을 것으로 예상된다.

Keywords

References

  1. Wolfe F. Fibromyalgia. Rheum Dis Clin North Am 1990;16: 681-698
  2. Wolfe F, Ross K, Anderson J, Russell IJ, Hebert L. The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum 1995;38:19-28 https://doi.org/10.1002/art.1780380104
  3. Mease P. Fibromyalgia syndrome: review of clinical presentation, pathogenesis, outcome measures, and treatment. J Rheumatol Suppl 2005;75:6-21
  4. Wolfe F, Smythe HA, Yunus MB, et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum 1990;33:160-172 https://doi.org/10.1002/art.1780330203
  5. Geenen R, Jacobs JW. Fibromyalgia: diagnosis, pathogenesis, and treatment. Curr Opin Anaesthesiol 2001;14:533-539 https://doi.org/10.1097/00001503-200110000-00012
  6. Gracely RH, Geisser ME, Gieseck, et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 2004;127:835-843 https://doi.org/10.1093/brain/awh098
  7. Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 2007;27:4004-4007 https://doi.org/10.1523/JNEUROSCI.0098-07.2007
  8. Robinson ME, Craggs JG, Price DD, Perlstein WM, Staud R. Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain 2011;12:436-443 https://doi.org/10.1016/j.jpain.2010.10.003
  9. Schmidt-Wilcke T, Leinisch E, Straube A, et al. Gray matter decrease in patients with chronic tension type headache. Neurology 2005;65:1483-1486 https://doi.org/10.1212/01.wnl.0000183067.94400.80
  10. D'Esposito M, Detre JA, Aguirre GK, et al. A functional MRI study of mental image generation. Neuropsychologia 1997;35: 725-730 https://doi.org/10.1016/S0028-3932(96)00121-2
  11. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150-157 https://doi.org/10.1038/35084005
  12. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 2002;46:1333-1343 https://doi.org/10.1002/art.10225
  13. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9:463-484 https://doi.org/10.1016/j.ejpain.2004.11.001
  14. Williams DA. Psychological and behavioural therapies in fibromyalgia and related syndromes. Best Pract Res Clin Rheumatol 2003;17:649-665 https://doi.org/10.1016/S1521-6942(03)00034-2
  15. Hauser W, Bernardy K, Uceyler N, Sommer C. Treatment of fibromyalgia syndrome with antidepressants: a meta-analysis. JAMA 2009;301:198-209 https://doi.org/10.1001/jama.2008.944
  16. Uceyler N, Sommer C, Walitt B, Hauser W. Anticonvulsants for fibromyalgia. Cochrane Database Syst Rev 2013;10: CD010782
  17. Kim SH, Lee Y, Lee S, Mun CW. Evaluation of the effectiveness of pregabalin in alleviating pain associated with fibromyalgia: using functional magnetic resonance imaging study. PLoS One 2013;8: e74099 https://doi.org/10.1371/journal.pone.0074099
  18. RH Gracely, DM Kwilosz. The Descriptor Differential Scale: applying psychophysical principles to clinical pain assessment. Pain 1988;35:279-288 https://doi.org/10.1016/0304-3959(88)90138-8
  19. Hedberg TG, Stanton PK. Long-term potentiation and depression of synaptic transmission in rat posterior cingulate cortex. Brain Res 1995;670:181-196 https://doi.org/10.1016/0006-8993(94)01254-F
  20. Beauregard M, Leroux JM, Bergman, et al. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 1998;9:3253-3258 https://doi.org/10.1097/00001756-199810050-00022
  21. Raichle NE, MacLeod AM, Snyder Az, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682 https://doi.org/10.1073/pnas.98.2.676

Cited by

  1. 섬유근통에 대한 국내 임상 연구 동향 및 중재 방향 vol.15, pp.2, 2020, https://doi.org/10.30581/jcmm.2020.15.2.43