DOI QR코드

DOI QR Code

Screening and Histopathological Characterization of Korean Carrot Lines for Resistance to the Root-Knot Nematode Meloidogyne incognita

  • Seo, Yunhee (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Jiyeong (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Yong Su (KC Carrot Breeding Institute Co., Ltd.) ;
  • Park, Yong (KC Carrot Breeding Institute Co., Ltd.) ;
  • Kim, Young Ho (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.08.27
  • Accepted : 2013.11.18
  • Published : 2014.03.01

Abstract

In total, 170 carrot lines developed in Korea were screened for resistance to Meloidogyne incognita race 1 to select parental genetic resources useful for the development of nematode-resistant carrot cultivars. Using the gall index (GI), gall formation was examined on carrot roots inoculated with approximately 1,000 second-stage juveniles of the nematode 7 weeks after inoculation. Sixty-one carrot lines were resistant (GI ${\leq}1.0$), while the other 109 were susceptible (GI > 1.0) with coefficient of variance (CV) of GI for total carrot lines 0.68, indicating low-variation of GI within the lines examined. The histopathological responses of two carrot plants from resistant and susceptible lines were examined after nematode infection. In susceptible carrots, giant cells formed with no discernible necrosis around the infecting nematodes. In the resistant carrot line, however, no giant cells formed, although modified cells were observed with extensive formation of necrotic layers through their middle lamella and around the infecting nematodes. This suggested that these structural modifications were related to hypersensitive responses governed by the expression of true resistance genes. Therefore, the Korean carrot lines resistant to the nematode infection are potential genetic resources for the development of quality carrot cultivars resistant to M. incognita race 1.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology, 5th ed. Academic Press, San Diego, CA. USA. 922 pp.
  2. Anwar, S. A and McKenry, M. V. 2010. Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan J. Zool. 42:135-141.
  3. Baker, K. R. 1985. Nematode extractions and bioassays. In: An advanced treatise on Meloidogyne. Vol. II. Methodology, eds. by K.R. Baker, C.C. Carter, and J.N. Sasser, pp. 19-35. North Carolina State University, NC, USA.
  4. Bridge, J. and Starr, J. L. 2007. Plant nematodes of agricultural importance: A color handbook. Academic Press, San Diego, CA, USA.
  5. Canto-Saenz, M. 1985. The nature of resistance to Meloidogyne incognita (Kofoid & White, 1919) chitwood, 1949. In: An advanced treatise on Meloidogyne, Vol. 1. Biology and Control, eds. by J. N. Sasser and C. C. Carter, pp. 225-231. North Carolina State University Graphics, Raleigh, NC, USA.
  6. Chakraborty, S., Tiedemann, A. V. and Teng, P. S. 2000. Climate change: Potential impact on plant disease. Environ. Pollut. 108:317-326. https://doi.org/10.1016/S0269-7491(99)00210-9
  7. Choi, C. J., Lee, C. H., Lee, S. S., Choi, K. S. and Ryu, J. S. 1974. Studies on the characteristics with cultivating season and correlation between some phenotype of carrot, Dacus carota L. varieties. Res. Rept. REA (Hort.) 16:37-45 (in Korean).
  8. Ellis, D. E. 1943. Root-knot resistance in Lycopersicon peruvianum. Plant Dis. Rep. 27:402-404.
  9. Harris, J. A., Hobbs, R. J., Higgs, E. and Aronson, J. 2006. Ecological restoration and global climate change. Restor. Ecol. 14:170-176. https://doi.org/10.1111/j.1526-100X.2006.00136.x
  10. IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change. In: Synthesis report. Contribution of working group I, II, and III to the fourth assessment of the Intergovernmental Panel on Climate Change, eds. by R.K. Pachauri and A. Reisinger. IPCC, Geneva, Switzerland.
  11. Johnson, A. W. and Fassuliotis, G. 1984. Nematode parasites of vegetable crops. In: Plant and insect nematodes, ed. by W. R. Nickle, pp. 323-327. Marcel Dekker, Inc., New York, N. Y., USA.
  12. Jones, M. G. K. 1981. Host cell responses to endoparasitic attack: Structure and function of giant cells and syncytia. Ann. Appl. Biol. 7:353-372.
  13. Kim, D. G. 2001. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Dis. 7:69-79 (in Korean).
  14. Kim, D. G. and Choi, S. K. 2001. Effects of incorporation method of nematicides on reproduction of Meloidogyne arenaria. Kor. J. Appl. Entomol. 40:89-95 (in Korean).
  15. Kim, D. G., Choi, D. R. and Lee, S. B. 2001a. Effects of control methods on yields of Oriental melon in fields infested with Meloidogyne arenaria. Res. Plant. Dis. 7:42-48 (in Korean).
  16. Kim, D. G., Lee, Y. G. and Park, B. Y. 2001b. Root-knot nematode species distributing in greenhouses and their simple identification. Res. Plant Dis. 7:49-55 (in Korean).
  17. Kim, Y. H., Riggs, R. D. and Kim, K. S. 1987. Structural changes associated with resistance of soybean to Heterodera glycines. J. Nematol. 19:177-187.
  18. Kim, Y. H., Riggs, R. D. and K. S. Kim. 1999. Heterodera glycines-induced syncytium structures related to the nematode growth and reproduction in susceptible soybean cultivars. Plant Pathol. J. 15:1-7.
  19. Kim, Y. H., Kim, K. S. and Riggs, R. D. 2010. Differential subcellular responses in resistance soybeans infected with soybean cyst nematode races. Plant Pathol. J. 26:154-158. https://doi.org/10.5423/PPJ.2010.26.2.154
  20. Kim, Y.H ., Kim, K. S. and Riggs, R. D. 2012. Initial subcellular responses of susceptible and resistant soybeans infected with the soybean cyst nematode. Plant Pathol. J. 28:401-408. https://doi.org/10.5423/PPJ.OA.04.2012.0054
  21. Kinloch, R. A. and Hinson, K. 1972. The Florida program for evaluating soybean (Glycine max (L.) Merr.) genotypes for susceptibility to root-knot nematode disease. Proc. Soil Crop Sci. Florida 32:173-176.
  22. Korean Society of Plant Pathology. 2009. List of plant diseases in Korea, 5th ed. Korean Society of Plant Pathology, Suwon, Korea.
  23. Leonard, K. J. 2006. Selection pressures and plant pathogens. Ann. New York Acad. Sci. 287:207-222.
  24. Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. 2012. Food, agriculture, forestry and fisheries statistic yearbook 2012. Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
  25. Moon, H. S., Khan, Z., Kim, S. G., Son, S. H. and Kim, Y. H. 2010. Biological and structural mechanisms of disease development and resistance in chili pepper infected with the root-knot nematode. Plant Pathol. J. 26:149-153. https://doi.org/10.5423/PPJ.2010.26.2.149
  26. Park, Y. 1995a. Breeding of brown anther type male sterile lines with high phenotypic stability in carrots. J. Kor. Soc. Hort. Sci. 36:1-9 (in Korean).
  27. Park, Y. 1995b. Selection of petaloid type male sterile lines with white petal color in carrots. J. Kor. Soc. Hort. Sci. 36:10-20 (in Korean).
  28. Park, Y. and Pyo, H. K. 1977. Inheritance of male sterility in the carrot (Dacus carota L.). J. Kor. Soc. Hort. Sci. 18:48-59 (in Korean).
  29. Park, Y. and Pyo, H. K. 1988a. Genetical study of male sterility in carrots, Dacus carota L. I. Inheritance of male sterility. J. Kor. Soc. Hort. Sci. 29:178-190 (in Korean).
  30. Park, Y. and Pyo, H. K. 1988b. Genetical study of male sterility in carrots, Dacus carota L. II. Breeding of maintenance lines. J. Kor. Soc. Hort. Sci. 29:266-271 (in Korean).
  31. Park, Y. and Pyo, H. K. 1989. Genetical study of male sterility in carrots, Dacus carota L. III. Inheritance and phenotypic stability of male sterility in 'Shin Korota I' and 'Spartan Bonus.' J. Kor. Soc. Hort. Sci. 30:7-10 (in Korean).
  32. Park, Y., Cho, M. S. Kim, Y. S. and Park, S. G. 2002. A promising carrot mutant, spineless seeds. J. Kor. Soc. Hort. Sci. 43:707- 709 (in Korean).
  33. Paulson, R. E. and Webster, J. M. 1972. Ultrastructure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita. Physiol. Plant Pathol. 2:227-234. https://doi.org/10.1016/0048-4059(72)90005-7
  34. Pyo, J. S., Lee, S. W. and Kim, Z. H. 2001. Path coefficient analysis of major characters on root weight of Dacus carota L. J. Agric. Life Sci. 35:31-38 (in Korean).
  35. Pyo, J. S., Lee, S. W. and Kim, Z. H. 2002. Path analysis of major characters affecting selection score in breeding of Dacus carota L. J. Agric. Life Sci. 36:27-37 (in Korean).
  36. Reed, G. F., Lynn, F. and Meade, B. D. 2002. Use of coefficient of variation in assessing variability of quantitative assays. Clin. Diagnost. Lab. Immunol. 9:1235-1239.
  37. Rhoades, H. L. 1976. Effects of Indigofera hirsuta on Belonolaimus longicaudatus, Meloidogyne incognita, and M. javanica and subsequent crop yield. Plant Dis. Rep. 60:384-386.
  38. Roberts, P. A. 1987. The influence of planting date of carrot on Meloidogyne incognita reproduction and injury to roots. Nematologica 33:325-342.
  39. Roberts, P. A., Dalmasso, A., Cap, G. B. and Castangnone- Sereno, P. 1990. Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. J. Nematol. 22:585-589.
  40. Sasser, J. N., Carter, C. C. and Hartman, K. M. 1984. Standardization of host suitability studies and reporting of resistance to rootknot nematodes. Crop Nematode Research Control Project, NCSU/USAID. Department of Plant Pathology, NCSU, Raleigh, NC, USA.
  41. Shepherd, R. L. and Huck, M. G. 1989. Progression of rootknot nematode symptoms and infection on resistant and susceptible cottons. J. Nematol. 21:235-241.
  42. Simon, P. W., Freeman, R. E., Vieira, J. V., Boiteux, L. S., Briard, M., Nothnagel, T., Michalik, B. and Kwon, Y. S. 2008. Carrot. In: Handbook of plant breeding, vol. 2. eds. by J. Prohens and F. Nuez, pp. 327-357. Springer, New York, NY, USA.
  43. Siroka, R. A. and Fernandez, E. 1990. Nematode parasites of vegetables. In: Plant parasitic nematodes in subtropical and tropical agriculture, eds. by M. R. Luc, A. Siroka, and J. Bridge, pp. 319-392. (eds.). CAB Bioscience, Egham, UK.
  44. Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2008. Effects of seed treatment with rhizobacterium, Paenibacillus species on management of root-knot nematode-Fusarium wilt fungus disease complex in tomato plants. Russ. J. Nematol. 16:97-105.
  45. Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture Fisheries and Food, HMSO, London, UK.
  46. Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  47. Watts, V. M. 1947. The use of Lycopersicon peruvianum as a source of nematode resistance in tomato. Proc. Amer. Soc. Hort. Sci. 49:233-234.

Cited by

  1. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium vol.30, pp.3, 2014, https://doi.org/10.5423/PPJ.OA.02.2014.0013
  2. Ultrastructure of the epiphytic sooty mold Capnodium and surface-colonized walnut leaves vol.146, pp.1, 2016, https://doi.org/10.1007/s10658-016-0895-9
  3. Control of Meloidogyne incognita Using Mixtures of Organic Acids vol.30, pp.4, 2014, https://doi.org/10.5423/PPJ.NT.07.2014.0062
  4. Three-dimensional surface reconstruction and in situ site-specific cutting of the teliospores of Puccinia miscanthi causing leaf rust of the biomass plant Miscanthus sinensis vol.73, 2015, https://doi.org/10.1016/j.micron.2015.03.007
  5. Ultrastructure of the Rust Fungus Puccinia miscanthi in the Teliospore Stage Interacting with the Biofuel Plant Miscanthus sinensis vol.31, pp.3, 2015, https://doi.org/10.5423/PPJ.NT.04.2015.0051
  6. Genome-wide analysis of PHD family transcription factors in carrot (Daucus carota L.) reveals evolution and response to abiotic stress vol.38, pp.3, 2016, https://doi.org/10.1007/s11738-016-2086-x