DOI QR코드

DOI QR Code

Fungicide Sensitivity and Characterization of Cobweb Disease on a Pleurotus eryngii Mushroom Crop Caused by Cladobotryum mycophilum

  • Kim, Min Keun (Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Seuk, Su Won (Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Lee, Young Han (Environment-Friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Kim, Hye Ran (Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Kye Man (Department of Food Science, Gyeongnam National University of Science and Technology)
  • Received : 2013.09.30
  • Accepted : 2013.11.11
  • Published : 2014.03.01

Abstract

In 2009-2010, unusual symptoms were observed on Pleurotus eryngii grown in mushroom farms in Gyeongnam Province, Republic of Korea. One of the main symptoms was a cobweb-like growth of fungal mycelia over the surface of the mushroom. The colonies on the surface rapidly overwhelmed the mushrooms and developed several spores within 3-4 days. The colonized surface turned pale brown or yellow. The fruit body eventually turned dark brown and became rancid. Koch's postulates were completed by spraying and spotting using isolated strains. The phylogenetic tree obtained from the internal transcribed spacer sequence analysis showed that the isolated fungal pathogen corresponded to Cladobotryum mycophilum (99.5%). In the fungicide sensitivity tests, the $ED_{50}$ values for the isolate with respect to benomyl and carbendazim were from 0.29 to 0.31 ppm. Benzimidazole fungicides were most effective against C. mycophilum, a causal agent of cobweb disease in P. eryngii.

Keywords

References

  1. Adie, B., Grogan, H., Archer, S. and Mills, P. 2006. Temporal and spatial dispersal of Cladobotryum conidia in the controlled environment of a mushroom growing room. Appl. Environ. Microbiol. 72:7212-7217. https://doi.org/10.1128/AEM.01369-06
  2. Back, C. G. and Kim, Y. H. 2010. Cobweb disease on Agaricus bisporus caused by Cladobotryum mycophilum in Korea. J. Gen. Plant Pathol. 76:232-235. https://doi.org/10.1007/s10327-010-0236-3
  3. Dar, G. M. 1997. Studies on the dispersal of cobweb disease of cultivated white button mushroom. Res. Dev. Reporter 14:43-48.
  4. De Hoog, G. S. 1978. Notes on some fungicolus hyphomycetes and their relatives. Persoonia 10:33-81.
  5. Falkow, S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:274-276. https://doi.org/10.1093/cid/10.Supplement_2.S274
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39:783-91. https://doi.org/10.2307/2408678
  7. Fletcher, J. T. and Jaffe, B. 1993. Mushrooms-fungicide resistance. Horticultural Development Council Research Report M14. Kent, ME19DZ, UK, Bradbourne House.
  8. Fletcher, J. T., Hims, M. J. and Hal, R. J. 1983. The control of bubble diseases and cobweb disease of mushrooms with prochloraz. Plant Pathol. 32:123-131. https://doi.org/10.1111/j.1365-3059.1983.tb01310.x
  9. Gaze, R. H. 1995. Dactylium or cobweb. Mushroom J. 546:23-24.
  10. Gaze, R. H. 1996. The past year. Mushroom J. 552:24-25.
  11. Gaze, R. H. and Fletcher, J. T. 2008. Mushroom pest and disease control: a color handbook. SD, USA, Academic Press.
  12. Gea, F. J., Tello, J. C. and Navarro, M. J. 2003. Occurrence of Verticillium fungicola var. fungicola on Agaricus bitorquis mushroom crops Spain. J. Phytopathol. 151:98-100. https://doi.org/10.1046/j.1439-0434.2003.00687.x
  13. Grogan, H. M. and Gaze, R. H. 2000. Fungicide resistance among Cladobotryum spp. causal agents of cobweb disease of the edible mushroom Agaricus bisporus. Mycol. Res. 104:357-364. https://doi.org/10.1017/S0953756299001197
  14. Hassall, K. A. 1990. The Biochemistry and Uses of Pesticides. Weinheim, Cambridge, UK, 536 pp.
  15. Inglis, P. W. and Burden, J. F. 1996. Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus. Microbiology 142: 3253-3260. https://doi.org/10.1099/13500872-142-11-3253
  16. Kim, H. K., Seok, S. J., Kim, G. P., Moon, B. J. and Terashita, T. 1999. Occurrence of disease caused by Cladobotryum varium on Flammulina velutipes in Korea. Korean J. Mycol. 27:415-419.
  17. Kim, M. K., Ryu, J. S., Lee, Y. H. and Yun, H. D. 2007. First report of Pantoea sp. induced soft rot disease of Pleurotus eryngii in Korea. Plant Dis. 91:109.
  18. Kim, T. S., Lee, H. W., Song, G. W. and Shin, W. G. 1998. King oyster mushroom (Pleurotus eryngii) white mold disease caused by Cladobotryum varium. KSM News Lett 11:46.
  19. McKay, G. J., Egan, D., Morris, E. and Brown, A. E. 1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycol. Res. 102:671-676. https://doi.org/10.1017/S095375629700542X
  20. Mckay, G. J., Egan, D., Morris, E., Scott, C. and Brown, A. E. 1999. Genetic and morphological characterization of Cladobotryum species causing cobweb disease of mushrooms. Appl. Environ. Microbiol. 65:606-610.
  21. Ohga, S. and Royse, D. J. 2004. Cultivation of Pleurotus eryngii on umbrella plant (Cyperus alternifolius) substrate. J. Wood Sci. 50:466-469. https://doi.org/10.1007/s10086-003-0574-2
  22. Okamoto, H., Sato, M. and Isaka, M. 1999. Bacterial soft rot of winter mushroom and oyster mushroom caused by Erwinia carotovora subsp. carotovora. Ann. Phytopathol. Soc. Jpn. 65: 460-464. https://doi.org/10.3186/jjphytopath.65.460
  23. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4:406-425.
  24. Sharma, V. P., Suman, B. C. and Guleria, D. S. 1992. Cladobotryum verticillatum a new pathogen of Agaricus bitorquis (Que'l.) Sacc. Indian J. Mycol. Plant Pathol. 22:62-65.
  25. Sinden, J. W. 1971. Ecological control of pathogens and weed moulds in mushroom culture. Annu. Rev. Phytopathol. 9: 411-432. https://doi.org/10.1146/annurev.py.09.090171.002211
  26. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Cited by

  1. Identification of and antimicrobial activity of plant extracts against Pseudomonas putida from rot fruiting bodies of Pleurotus eryngii vol.212, 2016, https://doi.org/10.1016/j.scienta.2016.10.009
  2. Cobweb, a serious pathology in mushroom crops: A review vol.15, pp.2, 2017, https://doi.org/10.5424/sjar/2017152-10143
  3. Effect of five fungicides with different modes of action on cobweb disease (Cladobotryum mycophilum ) and mushroom yield vol.171, pp.1, 2017, https://doi.org/10.1111/aab.12352
  4. Characterization and pathogenicity of Cladobotryum mycophilum in Spanish Pleurotus eryngii mushroom crops and its sensitivity to fungicides vol.147, pp.1, 2017, https://doi.org/10.1007/s10658-016-0986-7
  5. in China vol.102, pp.4, 2018, https://doi.org/10.1094/PDIS-05-17-0741-PDN
  6. Genome Sequencing of Cladobotryum protrusum Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom vol.10, pp.2, 2019, https://doi.org/10.3390/genes10020124