DOI QR코드

DOI QR Code

Performance Evaluation of Underwater Code Division Multiple Access Scheme on Forward-Link through Water-Tank and Lake Experiment

수조 및 저수지 실험을 통한 수중 코드 분할 다중 접속 기법 순방향 링크 성능 분석

  • 서보민 (경북대학교 IT대학 전자공학부 이동통신연구실) ;
  • 손권 (국방과학연구소) ;
  • 조호신 (경북대학교 IT대학 전자공학부 이동통신연구실)
  • Received : 2013.12.12
  • Accepted : 2014.02.03
  • Published : 2014.02.28

Abstract

Code division multiple access (CDMA) is one of the promising medium access control (MAC) schemes for underwater acoustic sensor networks because of its robustness against frequency-selective fading and high frequency-reuse efficiency. As a way of performance evaluation, sea or lake experiment has been employed along with computer simulation.. In this study, we design the underwater CDMA forward-link transceiver and evaluate the feasibility aginst harsh underwater acoustic channel in water-tank first. Then, based on the water-tank experiment results, we improved the transceiver and showed the improvements in a lake experiment. A pseudo random noise code acquisition process is added for phase error correction before decoding the user data by means of a Walsh code in the receiver. Interleaving and convolutional channel coding scheme are also used for performance improvement. Experimental results show that the multiplexed data is recovered by means of demultiplexing at receivers with error-free in case of two users while with less than 15% bit error rate in case of three and four users.

코드 분할 다중 접속 기법은 주파수 선택적 페이딩에 강인하고 높은 주파수 재사용 효율 특성으로 인해 열악한 수중 환경에서의 유망한 매체 접속 제어 기법으로 많은 연구가 진행되고 있다. 또한 최근 수중 매체 접속 제어기법의 성능 분석이 모의실험을 통해서 뿐만 아니라 해상 및 저수지에서의 실제 실험을 통해 이뤄지고 있다. 이에 본 논문에서는 수중 코드 분할 다중 접속 기법의 순방향 링크에 대한 트랜스시버를 설계한다. 수조 실험을 통해 코드 분할 다중 접속 기법의 수중 환경 적용 가능성을 검증하며, 수조 실험으로 얻어진 결과를 바탕으로 개선된 성능의 트랜스시버를 설계하고 모의실험과 저수지 실험을 통해 성능 개선을 확인한다. 사용자 데이터는 월시 부호를 사용하여 다중화되며, PN 획득 과정을 통해 위상 오류 정정 및 PN 부호 역확산을 수행한다. 또한 성능 향상을 위해 인터리빙 기법과 높은 오류 정정 효율을 가지는 채널 부호화 기법을 사용한다. 결과적으로 두 개의 다중화 데이터는 모두 오류 없이 복원되었으며, 세 개, 네 개의 다중화 데이터는 15% 이하의 오류율로 복원되었다.

Keywords

References

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: Research challenges," Ad Hoc Networks (Elsevier), vol. 3, no. 3, pp. 257-279, May 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. L. Xavier, An Introduction to Underwater Acoustics-Principles and Applications, Springer Praxis, 2002.
  3. M. Stojanovic and C. J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," IEEE Comm. Mag., vol. 47, no. 1, pp. 84-89, Jan. 2009.
  4. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel," ACM SIGMOBILE Mobile Comput. and Comm. Rev., pp. 34-43, New York, USA, Oct. 2007.
  5. E. Sozer, J. Proakis, M. Stojanovic, J. Rice, A. Benson, and M. Hatch, "Direct sequence spread spectrum based modem for underwater acoustic communication and channel measurements," in Proc. MTS/IEEE OCEANS'99, vol. 1, pp. 228-233, Seattle, USA, Sept. 1999.
  6. I. F. Akyildiz, D. Pompili, and T. Melodia, "A CDMA-based medium access control for underwater acoustic sensor Networks," IEEE Trans. on Wireless Comm., vol. 8, no. 4, pp. 1899-1909, Apr. 2009. https://doi.org/10.1109/TWC.2009.080195
  7. L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, "Analysis of channel effects on direct-sequence and frequency-hopped spreadspectrum acoustic communication," IEEE J. Oceanic Engineering, vol. 26, no. 4, pp. 586-593, Oct. 2001. https://doi.org/10.1109/48.972098
  8. C. En, Z. Ziming, Z. Kanghuang, Q. Yuan, and D. Jie, "Performance analysis of underwater acoustic FH-CDMA network," in Proc. 2nd Int'l Conf. on Anti-counterfeiting, Secur. and Identifi. (ASID 2008), pp. 101-104, Guiyang, China, Aug. 2008.
  9. Y. Jiemin, X. Ru, W. Deqing, C. Huabin, and H. Xiaoyi, "Study on MC-CDMA for underwater acoustic networks," in Proc. Int'l Conf. on Comput. Sci. and Softw. Eng. 2008, vol. 3, pp. 614-617, Wuhan, China, Dec. 2008.
  10. D. Pompili, T. Melodia, and I. F. Akyildiz, "A CDMA-based medium access control for underwater acoustic Sensor networks," IEEE Trans. on Wireless Comm., vol. 8, no. 4, pp. 1899-1909, May 2009. https://doi.org/10.1109/TWC.2009.080195
  11. B. Seo and H.-S. Cho, "Performance analysis on code-division multiple access in underwater acoustic sensor networks," J. KICS, vol. 35, no. 9, pp. 874-881, Sept. 2010.
  12. M. Stojanovic and L. Freitag, "Wideband underwater acoustic CDMA: Adaptive multichannel receiver design," in Proc. MTS/IEEE OCEANS'05, pp. 1508-1513, Washington DC, USA, Sept. 2005.
  13. G. Shuxiang, Z Zixin, and P. Qinxue, "A CDMA acoustic communication system for multiple underwater robots," in Proc. IEEE Int'l Conf. on Robotics and Bio. 2008 (ROBIO 2008), pp. 1522-1526, Bangkok, Thailand, Feb. 2009.
  14. G. Shuxiang and Z. Zixin, "Design of a QPSK-CDMA acoustic communication system for multiple underwater vehicles," in Proc. Int'l Conf. on Mechatronics and Automation 2009 (ICMA 2009), pp. 3568-3572, Changchun, China, Aug. 2009.
  15. B.-M. Seo, J. Cho, K. Son, S.-K. Lee, and H.-S. Cho, "Design for 2-channel underwater code division multiple access transceiver," in Proc. The 23rd Joint Conf. on Comm. and Info. (JCCI 2013), pp. 1-2, Gyeongju, Korea, May 2013.
  16. J. Cho, D.-K. Kye, S. Kim, J. Kim, S. Choi, and H.-S. Cho, "An implementation of the code division multiple access(CDMA) simulator in the underwater channel," in Proc. KICS Int'l Conf. Commun. 2012 (KICS ICC 2012), pp. 177-178, Seoul, Korea, Nov. 2012.