DOI QR코드

DOI QR Code

트랜스포머의 자가 공진(Self-Resonance)특성을 이용한 자가 발진(Self-Oscillation) UV(Ultra Violet) 발생 플래시램프 전원장치설계 및 그 동작 특성

Design of the self-oscillation UV flash lamp power supply and the characteristic of its operation using self-resonance of the transformer

  • Kim, Shin-Hyo (Research and Development Team, Korea Ship Safety Technology Authority) ;
  • Cho, Dae-Kweon (Research and Development Team, Sangyoung Research and New Development, Gyeongnam College of Information)
  • 투고 : 2013.10.25
  • 심사 : 2013.12.26
  • 발행 : 2014.01.31

초록

UV 발생용 플래시램프의 전원공급장치는 강력한 아크방전을 유발하기 위하여 높은 승압 비를 갖는 전압변환회로를 가지고 있다. 일반적인 구조는 높은 승압비의 트랜스포머와 배전압정류방식(코크라프트 올튼 회로 등)으로 방전관의 절연을 파괴함과 동시에 방전관에 전류를 급격히 통과시키는 방식으로 구동한다. 이 때, 제논방전관의 방전특성상 입력전류를 제한하지 않으면 방전관의 과다 발열, 전극손실, 봉입기체의 산화가속 등으로 수명저하의 원인이 되므로, 반드시 방전관에 유입되는 전류를 제한해야 되며, 이를 Ballast라 하는데 일반적으로 인덕터나 저항을 사용하여 인입전류량을 제한한다. 트랜스포머의 자가 공진(self-resonance)을 이용하면 낮은 1, 2차권선 비에도 고유주파수의 전후에서 비교적 높은 피크 전압을 얻을 수 있다. 또한 트랜스포머의 특정주파수에서 고유임피던스 성분을 이용하여 출력전압을 필터링하면 제논방전관이 자가 발진방식으로 동작하므로 종래의 회로구성보다 간단하고 경제적인 아크방전 파워 스테이지의 구성이 가능하다.

These Xenon flashlamp power supply for Ultra Violet has converter with high voltage conversion ratio. General model is composed of transformer with high voltage conversion ratio and voltage doubler rectifier circuit. Purpose of power supply leads dielectric breakdown of Xenon flashlamp and passes current rapidly. When passing current, it has to limit current to avoid over-heat, damage of electrode and acceleration of gas oxidation which are cause of performance degradation of lamps. Generally, inductors and resistors, which are called as "Ballast," are used to limit currents. Generally, Transformer has high turn ratio to make high voltages. But we can get high voltages using the transformer with low turn ratio which is driven with self resonance. Also, an advantage of self resonance is to make a circuit simply through impedance of transformer in resonance frequency which filters output voltage. As using an unique impedance of transformer, the circuit does not need other impedance elements like the ballast. So the power supply assures high efficiency of the arc discharge.

키워드

참고문헌

  1. J. B. Trenholme and J. L. Emmet, "Proceeding of xenon flashlamp model for performance prediction", International Conference on High Speed Photography, p. 229, 1970.
  2. S. G. Cheon, D. W. Park, and G. S. Kil, "Development of an ultra-violet lamp and a ballast for ship's ballast water treatment," Journal of the Korean Society of Marine Engineering, vol. 35, no. 5, pp. 675-681, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.5.675
  3. T. S. Pyo, S. G. Cheon, D. W. Park, S. K. Choi, S. Y. Kim, and G. S. Kil, "Design and fabrication of a ballast water treatment system using UV lamps," Journal of the Korean Society of Marine Engineering, vol. 33, no. 6, pp. 952-958, 2009 (in Korean). https://doi.org/10.5916/jkosme.2009.33.6.952
  4. H. Elloumi, G. Zissis, T. Berthier, and J. J. Damelincourt, "Time-dependent behavior of a pulsed high power xenon flashlamp". Application to the mega-Joule laser pumping. Journal of Quantitative Spectroscopy & Radiative Transfer, vol. 84, no. 4, pp. 361-369, 2004.
  5. S. CHU and R. W. Smith, "A reliable thyratron- switched flashlamp-pumped dye laser," Optics Communications, vol. 28, no. 2, pp. 221-226, 1979. https://doi.org/10.1016/0030-4018(79)90273-6
  6. N. J. Zhao and W. Q. Liu, "Study of the charging circuit of a pulsed solid-state laser power supply: A new concept of high charging efficiency and realization," Optics & Laser Technology. vol. 41, no. 4, pp. 461-469, 2009. https://doi.org/10.1016/j.optlastec.2008.07.011
  7. J. H. Hong, K. Y. Song, H. J. Chung, J. H. Jung, W. Y. Kim, U. Kang, and H. J. Kim. "Long pulse generation technology of solid- state laser adopting a new real time multi- discharge method," Optics & Laser Technology, vol. 34, no. 3, pp. 203-207, 2002 https://doi.org/10.1016/S0030-3992(01)00111-6
  8. H. J. Kim, E. S. Kim, and D. H. Lee. "The development of a high repetitive and high power Nd:YAG laser by using a zero-current switching resonant converter," Optics & Laser Technology, vol. 30, no. 3-4, pp. 199-203, 1998.
  9. P. Mazzinghi and F. Margheri. "A short pulse, free running, Nd:YAG laser for the cleaning of stone cultural heritage," Optics and Laser in Engineering, vol. 39, no. 2, pp. 191-202, 2003. https://doi.org/10.1016/S0143-8166(01)00133-6
  10. S. Ang, Power Switching Converters, Marcel Dekker, Inc., 1995.
  11. N. Mohan, Tore M. Undeland, and William P. Robbins, Power Electronics, Converters, Applications, and Design, Hoboken: John Willey & Sons, Inc. 1989.
  12. Abraham I. Pressman, K. Billings, and Taylor Morey. Switching Power Supply Design, Third Edition. New York: The McGraw-Hill Companies., 2009.
  13. Dr. I. H. Oh, Analysis of a Resonant Type High Voltage Fly-back Converter in a CRT Horizontal Deflection Circuit and its High Voltage BJT Selection Guide-Line, AN9009, Fairchild Korea Semiconductor Inc. Sept. 19, 2000, available: http://www.fairchildsemi.com/an/AN/AN-9009.pdf
  14. G. Hartel, M. Kettlitz, H. Schopp, and F. Serick. "Pulsed alkali pump light sources for Nd:YAG lasers," Optic & Laser Technology, vol. 28, no. 6, pp. 437-443, 1996. https://doi.org/10.1016/0030-3992(96)00005-9
  15. K. I. Lee, H. C. Lee, J. Y. Cho, J. C. Lee, and J. H. Yi. "Passively Q-switched, high peak power Nd:YAG laser pumped by QCW diode laser," Optics & Laser Technology, vol. 44, no. 7, pp. 2053-2057, 2012. https://doi.org/10.1016/j.optlastec.2012.03.027
  16. P. A. Forrester, V. J. Alexander, and H. W. Evans, "Pocket-size Nd-YAG pulsed laser," Optics & Laser Technology, vol. 6. no. 4, pp. 174-176, 1974 https://doi.org/10.1016/0030-3992(74)90044-9

피인용 문헌

  1. A study on a dielectric heating system for amplifying the resonant gain using the capacitance of electrodes vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.940