DOI QR코드

DOI QR Code

Prediction of Affinity between Membrane and Esters Using Solubility Parameter

용해도 파라미터에 의한 막과 esters 간의 친화도 예측

  • Song, Kun-Ho (Gangwon Institute for Regional Program Evaluation) ;
  • Lee, Kwang-Rae (Dept. of Chemical Engineering, Kangwon National Univ.)
  • 송근호 (강원도지역사업평가원) ;
  • 이광래 (강원대학교 화학공학과)
  • Received : 2014.08.18
  • Accepted : 2014.12.25
  • Published : 2014.12.31

Abstract

To find out the feasibility of the separating/enriching esters from aqueous solution using FASs (Fluoloalkyl-silanes-coupling agent)-surface modified hydrophobic membrane, the solubility parameter of FASs was obtained and compared with those of esters and water. The value of the solubility parameter of FASs (${\delta}_t=16.9$) was almost same with those of esters (ethyl acetate ${\delta}_t=18.1$, propyl acetate ${\delta}_t=18.0$, ethyl propionate ${\delta}_t=17.9$, butyl acetate ${\delta}_t=17.4$, ethyl butyrate ${\delta}_t=17.0$). However, the calculated value of the solubility parameter of water was ${\delta}_t=47.8$, which was far from the value of the solubility parameter of FASs (${\delta}_t=16.9$). This means that the FASs-modified membrane has a much higher affinity to esters than water. The experimental results of permeation flux of esters used in this study showed that the order of permeation flux predicted by the solubility parameter was almost coincide with experimental results. It might be concluded that the solubility parameter may be applicable for a separating/enriching flavors from aqueous natural-flavor solution, in which esters are main components of natural flavors.

FASs로 표면 개질한 소수성 막을 이용하여 수용액으로부터 에스테르 성분을 분리/농축 가능성을 알기 위하여, FASs (Fluoloalkyl-silanes-coupling agent)의 용해도 파라미터를 구하여 에스테르와 물의 용해도 파라미터와 비교하였다. FASs의 용해도 파라미터는 ${\delta}_t=16.9$이었으며, 에스테르(ethyl acetate ${\delta}_t=18.1$, propyl acetate ${\delta}_t=18.0$, ethyl propionate ${\delta}_t=17.9$, butyl acetate ${\delta}_t=17.4$, ethyl butyrate ${\delta}_t=17.0$)의 용해도 파라미터와 비슷하였다. 그러나, 물의 용해도 파라미터는 ${\delta}_t=47.8$이었으며, FASs의 용해도 파라미터(${\delta}_t=16.9$)와는 큰 차이를 나타내었다. 이것은 FASs로 표면 개질한 소수성 막이 물 보다는 에스테르 성분에 매우 큰 친화도를 나타내는 것을 의미한다. FASs로 표면개질한 알루미나 막을 통한 이들 에스테르 성분들의 투과플럭스에 대한 실험치는 용해도 파라미터에 의해 예측한 투과플럭스 크기의 순서와 거의 동일하였으며, 용해도 파라미터에 의한 투과플럭스 예측은 천연 향의 수용액으로부터 향의 주성분인 에스테르 성분을 분리/농축하는 데 적용할 수 있음을 보여준다.

Keywords

References

  1. H. Jang, I. C. Kim, and Y. Lee, "Membrane permeation characteristics and fouling control through the coating of poly(vinyl alcohol) on PVDF membrane surface", Membrane Journal, 24, 276 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.276
  2. C. H. Park, H. S. Kim, and Y. M. Lee, "surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membrane Journal, 24, 301 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301
  3. D. H. Shin, N. Kim, and Y. T. Lee, "Surface modification of reverse osmosis membrane skin layer by silane compound", Membrane Journal, 16, 106 (2006).
  4. Y. S. Kang, S. W. Lee, U. Y. Lee, and J. S. Shim, "Pervaporation of water-ethanol mixtures through crosslinked and surfacemodified poly(vinyl alcohol) membrane", J. Membr. Sci., 51, 215 (1990). https://doi.org/10.1016/S0376-7388(00)80904-7
  5. J. W. Rhim and R. K. Kim, "Pervaporation separation of MTBE-methanol mixtures using cross-linked PVA membranes", J. Appl. Polym. Sci., 75, 1699 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1699::AID-APP3>3.0.CO;2-O
  6. S. C. George, K. N. Ninan, and S. Thomas, "Pervaporation separation of chlorinated hydrocarbon and acetone mixtures with crosslinked styrene-butadiene rubber and natural rubber blend membranes", J. Membr. Sci., 176, 131 (2000). https://doi.org/10.1016/S0376-7388(00)00439-7
  7. M. Niang, G. Luo, and P. Schaetzel, "Pervaporation separation of methyl tert-butyl ether/methanol mixtures using a high-performance blended membrane", J. Appl. Polym. Sci., 64, 875 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970502)64:5<875::AID-APP7>3.0.CO;2-M
  8. R. Y. M. Huang, R. Pal, and G. Y. Moon, "Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two-ply composite membranes supported by poly(vinylidene fluoride) porous membrane", J. Membr. Sci., 167, 275 (2000). https://doi.org/10.1016/S0376-7388(99)00293-8
  9. A. A. Bhat and V. G. Pangarkar, "Methanol-selective membranes for the pervaporative separation of methanol-toluene mixtures", J. Membr. Sci., 167, 187 (2000). https://doi.org/10.1016/S0376-7388(99)00289-6
  10. C. J. Brinker, R. Sehgal, S. L. Hietala, R. Deshpande, D. M. Smith, D. Loy, and C. S. Ashley, "Sol-gel strategies for controlled porosity inorganic materials", J. Membr. Sci., 94, 85 (1994). https://doi.org/10.1016/0376-7388(93)E0129-8
  11. S. Sakohara, F. Muramoto, T. Sakata, and M. Asaeda, "Separation of acetone/water mixture by thin acrylamide gel membrane prepared in pores of thin ceramic membrane", J. Chem. Eng. Jpn., 23, 40 (1990). https://doi.org/10.1252/jcej.23.40
  12. J. R. Dorgan and S. Y. Nam, "Prediction of pervaporation performance using solubility parameter calculation", Korean Membrane Journal, 5, 36 (2003).
  13. C. M. Hansen, "Chap. 35, Solubility Parameters", Paint and Coating Testing Manual, 383 (1995).
  14. R. F. Fedors, "A method for estimating both the solubility parameters and molar volumes of liquids", Polym. Eng. Sci., 14, 147 (1974). https://doi.org/10.1002/pen.760140211
  15. C. M. Hansen, "Hansen Solubility Parameters; A User's Handbook", CRC Press, 2nd ed. (2012).
  16. V. Nguyen, W. Yoshida, J. D. Jou, and Y. Cohen, "Kinetics of free-radical graft polymerization of 1-vinyl-2-pyrrolidone onto silica", J. Polym. Sci. A, 40, 26 (2002). https://doi.org/10.1002/pola.10081
  17. A. F. M. Barton, "CRC handbook of solubility parameters and other cohesion parameters", CRC Press, 2nd ed. (1991).