DOI QR코드

DOI QR Code

Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling

서울지역 시간별 에어로솔 자료를 이용한 화학성분별 광학특성 및 직접 복사강제력의 시간 변화 분석

  • Song, Sang-Keun (Department of Earth and Marine Sciences, Jeju National University) ;
  • Shon, Zang-Ho (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2013.09.11
  • Accepted : 2013.11.15
  • Published : 2014.02.28

Abstract

Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.

Keywords

References

  1. Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Bae, M.S. (2011) Seasonal estimation of organic mass to organic carbon (OM/OC ratio), Proceedings of 49th meeting of Korean Society for Atmospheric Environment.
  3. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hofmann (1992) Climate forcing by anthropogenic aerosols, Science, 255, 423-430. https://doi.org/10.1126/science.255.5043.423
  4. Chubarova, N.Y., M.A. Sviridenkow, A. Smirnov, and B.N. Holben (2011) Assessments of urban aerosol pollution in Moscow and its radiative effects, Atmospheric Measurement Techniques, 4, 367-378. https://doi.org/10.5194/amt-4-367-2011
  5. Chylek, P. and J. Wong (1995) Effect of absorbing aerosols on global radiative budget, Geophysical Research Letters, 22, 929-931. https://doi.org/10.1029/95GL00800
  6. Heo, J.-B., P.K. Hopke, and S.-M. Yi (2009) Source apportionment of $PM_{2.5}$ in Seoul, Korea, Atmospheric Chemistry and Physics, 9, 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  7. Hess, M., P. Koepke, and I. Schult (1998) Optical properties of aerosols and clouds: the software package OPAC, Bulletin of the American Meteorological Society, 79(5), 831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  8. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: Strategies for quantifying the relationship between Asian aerosols and their climatic impacts, Journal of Geophysical Research, 108, D23, 8633, doi:10.1029/2003JD003550.
  9. IPCC (2007) IPCC Fourth Assessment Report: Climate Change 2007-The Physical Science Basis, Cambridge University Press, Cambridge, UK and New York, NY, USA
  10. Kim, B.-G., Y.-J. Kim, and S.-H. Eun (2008) An analysis of aerosol optical properties around Korea using AERONET, Journal of Korean Society for Atmospheric Environment, 24(6), 629-640. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.6.629
  11. Kim, J., B.-C. Choi, A. Jefferson, and K.-C. Moon (2003) Aerosol light scattering and absorption measured at Gosan, Korea in Spring of 2001, Journal of Korean Meteorological Society, 39(2), 239-250. (in Korean with English abstract)
  12. Kim, J., S.-C. Yoon, S.-W. Kim, F. Brechtel, A. Jefferson, E.G. Dutton, K.N. Bower, S. Cliff, and J.J. Schauer (2006) Chemical apportionment of shortwave direct aerosol radiative forcing at the Gosan super-site, Korea during ACE-Asia, Atmospheric Environment, 40, 6718-6729. https://doi.org/10.1016/j.atmosenv.2006.06.007
  13. Kim, N.K., Y.P. Kim, and C.-H. Kang (2011) Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, $PM_{10}$, and $PM_{2.5}$ data between 1992 and 2008, Atmospheric Environment, 45, 6107-6115. https://doi.org/10.1016/j.atmosenv.2011.08.051
  14. Lee, S., Y.S. Ghim, S.-W. Kim, and S.-C. Yoon (2008) Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan, Journal of Korean Society for Atmospheric Environment, 24(4), 470-482. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.4.470
  15. Lee, S., Y.S. Ghim, S.-W. Kim, and S.-C. Yoon (2009) Seasonal characteristics of chemically apportioned optical properties at Seoul and Gosan, Korea, Atmospheric Environment, 43, 1320-1328. https://doi.org/10.1016/j.atmosenv.2008.11.044
  16. Moon, K.J., S.M. Park, J.S. Park, I.H. Song, S.K. Jang, J.C. Kim, and S.J. Lee (2011) Chemical characteristics and source apportionment of $PM_{2.5}$ in Seoul metropolitan area in 2010, Journal of Korean Society for Atmospheric Environment, 27, 711-722. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.6.711
  17. Nakajima, T., S.-C. Yoon, V. Ramanathan, G.-Y. Shi, T. Takemura, A. Higurashi, T. Takemura, K. Aoki, B.-J. Sohn, S.-W. Kim, H. Tsuruta, N. Sugimoto, A. Shimizu, H. Tanimoto, Y. Sawa, N.-H. Lin, C.-T. Lee, D. Goto, and N. Schutgens (2007) Overview of the atmospheric brown cloud east Asian regional experiment 2005 and a study of the aerosol direct radiative forcing in east Asia, Journal of Geophysical Research, 112, D24S91, doi:10.1029/2007JD009009.
  18. Park, S.S. and Y.J. Kim (2004) $PM_{2.5}$ particles and size-segregated ionic species measured during fall season in three urban sites in Korea, Atmospheric Environment, 38, 1459-1471. https://doi.org/10.1016/j.atmosenv.2003.12.004
  19. Penner, J.E., R.E. Dickinson, and C.A. O'Neill (1992) Effects of aerosol from biomass burning on the global radiation budget, Science, 256, 1432-1434. https://doi.org/10.1126/science.256.5062.1432
  20. Pilson, M.E.Q. (1998). An Introduction to the Chemistry of the Sea. Prentice Hall, New Jersey. 431 pp.
  21. Poschl, U. (2005) Atmospheric Aerosols: composition, transformation, climate and health effects, Angewandte Chemie International Edition, 44, 7520-7540. https://doi.org/10.1002/anie.200501122
  22. Praveen, P.S., T. Ahmed, A. Kar, I.H. Rehman, and V. Ramanathan (2012) Link between local scale BC emissions in the Indo-Gangenic Plains and large scale atmospheric solar absorption, Atmospheric Chemistry and Physics, 12, 1173-1187. https://doi.org/10.5194/acp-12-1173-2012
  23. Quinn, P.K., D.J. Coffman, T.S. Bates, E.J. Welton, D.S. Covert, T.L. Miller, J.E. Johnson, S. Maria, L. Russell, R. Arimoto, C.M. Carrico, M.J. Rood, and J. Anderson (2004) Aerosol optical properties measured on board the Ronald H. Brown during ACE-Asia as a function of aerosol chemical composition and source region, Journal of Geophysical Research, 109, D19S01, doi:10.1029/2003JD004010.
  24. Ramachandran, S. and S. Kedia (2010) Black carbon aerosols over an urban region: Radiative forcing and climate impact, Journal of Geophysical Research, 115, D10202, doi:10.1029/2009JD013560.
  25. Rosenfeld, D. (2000) Suppression of rain and snow by urban and industrial air pollution, Science, 287, 1793-1796. https://doi.org/10.1126/science.287.5459.1793
  26. Sagan, C. and J. Pollack (1967) Anisotropic nonconservative scattering and the clouds of Venus, Journal of Geophysical Research, 72, 469-477. https://doi.org/10.1029/JZ072i002p00469
  27. Seinfeld, J.H. and S.N. Pandis (2006) Atmospheric Chemistry and Physics-From Air Pollution to Climate Change. 2nd ed. New York: John Wiley & Sons.
  28. Shon, Z.-H., K.-H. Kim, S.-K. Song, Y.-Z. Chae, C.G. Park, and K. Jung (2012a) Fractionation of secondary organic carbon in aerosol in relation to the trafficborne emission of semivolatile organic compounds, Atmospheric Environment, 50, 225-233. https://doi.org/10.1016/j.atmosenv.2011.12.028
  29. Shon, Z.-H., K.-H. Kim, S.-K. Song, K. Jung, N.J. Kim, and J.-B. Lee (2012b) Relationship between water-soluble ions in $PM_{2.5}$ and their precursor gases in Seoul megacity, Atmospheric Environment, 59, 540-550. https://doi.org/10.1016/j.atmosenv.2012.04.033
  30. Shon, Z.-H., S. Ghosh, K.-H. Kim, S.-K. Song, K. Jung, and N.-J. Kim (2013) Analysis of water-soluble ions and their precursor gases over diurnal cycle, Atmospheric Research, 132-133, 309-321. https://doi.org/10.1016/j.atmosres.2013.06.003
  31. Singh, S., K. Soni, T. Bano, R.S. Ranwar, S. Nath, and B.C. Arya (2010) Clear-sky direct aerosol radiative forcing variations over mega-city Delhi, Annales Geophysicae, 28, 1157-1666. https://doi.org/10.5194/angeo-28-1157-2010
  32. Taha, H. (1997) Urban climates and heat island, albedo, evapotranspiration, and anthropogenic heat, Energy and Buildings, 25, 99-103. https://doi.org/10.1016/S0378-7788(96)00999-1
  33. Turpin, B.J. and H.-J. Lim (2001) Species contributions to $PM_{2.5}$ mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Science and Technology, 35, 602-610. https://doi.org/10.1080/02786820119445
  34. Twomey, S. (1974) Pollution and the planetary albedo, Atmospheric Environment, 8, 1251-1256. https://doi.org/10.1016/0004-6981(74)90004-3
  35. Yoon, S.-C., J.-G. Won, A.H. Omar, S.-W. Kim, and B.-J. Sohn (2005) Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data, Atmospheric Environment, 39, 6620-6630. https://doi.org/10.1016/j.atmosenv.2005.07.058
  36. Yu, H., Y.J. Kaufman, M. Chin, G. Feingold, L.A. Remer, T.L. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M.S. Reddy, M. Schulz, T. Takemura, and M. Zhou (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmospheric Chemistry and Physics, 6, 613-666. https://doi.org/10.5194/acp-6-613-2006
  37. Zhang, Q., J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P.F. DeCarlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R. Worsnop (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34, L13801, doi:10.1029/2007GLO29979.

Cited by

  1. Influence of Greenhouse Gas Emissions from Commercial Aircraft at Korean International Airports on Radiative Forcing and Temperature Change vol.30, pp.3, 2014, https://doi.org/10.5572/KOSAE.2014.30.3.223
  2. Impact of Greenhouse Gas Emissions from Commercial Aircraft on Radiative Forcing and Temperature Change at the Airports in Korea: Comparison between Simplified Expression and Radiative Transfer Model vol.30, pp.5, 2014, https://doi.org/10.5572/KOSAE.2014.30.5.411
  3. Estimations of the Optical Properties and Direct Radiative Forcing of Aerosol Chemical Components in PM2.5 Measured at Aewol Intensive Air Monitoring Site on Jeju Island vol.33, pp.5, 2017, https://doi.org/10.5572/KOSAE.2017.33.5.458