References
- Ahn, S.B., Koh, H.W., Lee, Y.I., 1985. Study on apple pests and natural enemy. Res. Rept. RDA. Crop Protection pp. 417-428.
- Butz, P., Tauscher, B., 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19, 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
- Carpenter, A., Potter, M., 1994. Controlled atmospheres, in: Sharp, J.L., Hallman, G.J. (Eds.), Quarantine treatments for pests and food plants. Westview, Boulder, CO., pp. 171-198.
- Chapman, D., 1967. The effect of heat on membrane and membrane constituents, in: Rose, A.H., (Ed.), Thermobiology. Academic, NY. pp. 123-146.
- Chen, H., Xu, X.L., Li, Y.P., Wu, J.X., 2013. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Sci. doi: 10.1111/1744-7917.
- Choi, K.H., Lee, D.H., Byun, B.K., Mochizuki, F., 2009. Occurrence of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), a new insect pest in apple orchards of Korea. Kor. J. Appl. Entomol. 48, 417-421. https://doi.org/10.5656/KSAE.2009.48.4.417
- Edwards, L.J., 1968. Carbon dioxide anaesthesia and succinic dehydrogenase in the corn earworm, Heliothis zea. J. Insect Physiol. 14, 1045-1048. https://doi.org/10.1016/0022-1910(68)90041-3
- Fleurat-Lessard, F., 1990. Effect of modified atmospheres on insects and mites infesting stored products. pp. 21-38. In Food preservation by modified atmosphere. eds. by M. Calderon, R. Barkai-Golan. CRC, Boca Raton, FL.
- Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385. https://doi.org/10.1146/annurev.ento.49.061802.123314
- Hochachka, P.W., Somero, G.N., 1984. Biochemical Adaptation. Princeton University Press, Princeton, NJ.
- Hoffman, K.H., 1985. Metabolic and enzyme adaptation to temperature. pp. 1-32. In Environmental physiology and biochemistry of insects. eds. K.H. Hoffman. Springer, NY.
- Hollingsworth, R.G., Armstrong, J.W., 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98, 289-298. https://doi.org/10.1603/0022-0493-98.2.289
- Ikediala, J.N., Tang, J., Neven, L.G., Drake, S.R., 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16, 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
- Jung, C.R., Kim, Y., 2011. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers. J. Asia Pac. Entomol. 16, 189-197. https://doi.org/10.1016/j.aspen.2013.01.008
- Kanga, L.H.B., Pree, D.J., Plapp, Jr., F.W., van Lier, J.L., 2001. Sex-linked altered acetylcholinesterase resistance to carbamate insecticides in adults of the oriental fruit moth, Grapholita molesta (Lepidoptera; Tortricidae). Pestic. Biochem. Physiol. 71, 29-39. https://doi.org/10.1006/pest.2001.2562
- Kells, S.A., Mason, L.J., Maier, D.E., Woloshuk, C.P., 2001. Efficacy ad fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37, 371-382. https://doi.org/10.1016/S0022-474X(00)00040-0
- Koval, T.M., 1994. Intrinsic stress resistance of cultured Lepidopteran cells. pp. 157-185. In Insect cell biotechnology. eds. by K. Maramorosch, A. McIntosh. CRC, Boca Raton, FL.
- Liu, Y.B., 2003. Effects of vacuum and controlled atmosphere on insect mortality and lettuce quality. J. Econ. Entomol. 96, 1110-1117.
- Nelson, S.O., 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39, 1475-1484. https://doi.org/10.13031/2013.27641
- Neven, L.G., 2008a. Organic quarantine treatment for tree fruits. HortScience 43, 22-26.
- Neven, L.G., 2008b. Development of a model system for rapid assessment of insect mortality in heated controlled atmosphere quarantine treatments. J. Econ. Entomol. 101, 295-301. https://doi.org/10.1603/0022-0493(2008)101[295:DOAMSF]2.0.CO;2
- Neven, L.G., Drake, S.R., 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20, 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
- Neven, L.G., Drake, S.R., Shellie, K., 2001. Development of a high temperature controlled atmosphere quarantine treatment for pome and stone fruits. Acta Hortic. 553, 457-460.
- Neven, L.G., Follett, P.A., Raghubeer, E., 2007. Potential for high hydrostatic pressure processing to control quarantine insects in fruit. J. Econ. Entomol. 100, 1499-1503. https://doi.org/10.1603/0022-0493(2007)100[1499:PFHHPP]2.0.CO;2
- Neven, L.G., Hansen, L.D., 2010. Effects of temperature and controlled atmospheres on codling moth metabolism. Ann. Entomol. Soc. Am. 103, 418-423. https://doi.org/10.1603/AN09133
- Neven, L.G., Mitcham, E.J., 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42, 56-59. https://doi.org/10.1093/ae/42.1.56
- Neven, L.G., Rehfield-Ray, L., 1995. Comparison of prestorage heat treatments on fifth-instar codling moth (Lepidoptera: Tortricidae) mortality. J. Econ. Entomol. 88, 1371-1375. https://doi.org/10.1093/jee/88.5.1371
- Neven, L.G., Rehfield-Ray, L., 2006a. Combined heat and controlled atmosphere quarantine treatments for control of western cherry fruit fly in sweet cherries. J. Econ. Entomol. 99, 658-663. https://doi.org/10.1603/0022-0493-99.3.658
- Neven, L.G., Rehfield-Ray, L., 2006b. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1620-1627. https://doi.org/10.1603/0022-0493-99.5.1620
- Neven, L.G., Rehfield-Ray, L., Obenland, D., 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in peaches and nectarines using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1610-1616. https://doi.org/10.1603/0022-0493-99.5.1610
- Nikam, T.B., Khole, V.V., 1989. Insect spiracular systems. Wiley, NY.
- NOP (National Organic Program), 2007. National Organic Program. http://www.ams.usda.gov/nop/indexIE.htm.
- Obenland, D., Neipp, P., Mackey, B., Neven, L.G., 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40, 1425-1430.
- Paull, R.E., Armstrong, J.W., 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
- Pimentel D., Lach, L., Zuniga, R., Morrison, D., 2002. Environmenta l and economic costs of alien arthropods and other organisms in the United States. pp. 285-303. In Invasive arthropods in agriculture:problems and solutions. eds. by G.J. Hallman, C.P. Schwalbe. Science, Enfield, NH.
- Pree, D.J., Whitty, K.J., van Driel, L., Walker, G.M., Van Driel, L., 1998. Resistance to insecticides in oriental fruit moth populations (Grapholita molesta) from the Niagara Peninsula of Ontario. Can. Entomol. 130, 245-256. https://doi.org/10.4039/Ent130245-3
- Sharp, J.L., Hallman, G.J., 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO.
- Son, Y., Choi, K.H., Kim, Y., Kim, Y., 2010. Application of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49, 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037
- Son, Y., Chon, I., Neven, L., Kim, Y., 2012a. Controlled atmosphere and temperature treatment system to disinfest fruit moth, Carposina sasakii (Lepidoptera: Carposinidae) on apples. J. Econ. Entomol. 105, 1540-1547. https://doi.org/10.1603/EC12133
- Son, Y., Lee, J., Kim, Y., 2012b. Controlled efficacy of controlled atmosphere and temperature treatment system against the hawthorn spider mite, Tetranychus viennensis. Kor. J. Appl. Entomol. 51, 131-140. https://doi.org/10.5656/KSAE.2012.04.0.08
- Song, S., Choi, K., Lee, S., Kim, Y., 2007. DNA markers applicable for identification of two internal apple feeders, Grapholita molesta and Carposina sasakii. Kor. J. Appl. Entomol. 46, 175-182. https://doi.org/10.5656/KSAE.2007.46.2.175
- Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D., Cavalieri, R.P., 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
- Toba, H.H., Howell, J.F., 1991. An improved system for mass-rearing codling moths. J. Entomol. Soc. Br. Columbia 88, 22-27.
- Torres, J.A., Velazquez, G., 2005. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112. https://doi.org/10.1016/j.jfoodeng.2004.05.066
- Usmani, K.A., Shearer, P.W., 2001. Topical pheromone trap assays for monitoring susceptibility of male oriental fruit moth (Lepidoptera:Tortricidae) populations to azinphosmethyl in New Jersey. J. Econ. Entomol. 94, 233-239. https://doi.org/10.1603/0022-0493-94.1.233
- Wang, S., Tang, J., Johnson, J.A., Micham, E., Hansen, J.D., 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26, 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0
- Yin, X., Wang, S., Tang, J., Hansen, J.D., Lurie, S., 2006. Thermal conditioning of fifth-instar Cydia pomonella (Lepidoptera: Tortricidae) affects HSP70 accumulation and insect mortality. Physiol. Entomol. 31, 241-247. https://doi.org/10.1111/j.1365-3032.2006.00512.x
Cited by
- Post-harvest Treatment on the Peach Pyralid Moth and the Small Tea Tortrix Moth Infesting Apples Using Controlled Atmosphere and Temperature Treatment System vol.54, pp.1, 2015, https://doi.org/10.5656/KSAE.2015.01.1.066