DOI QR코드

DOI QR Code

목화진딧물 감염 식물 및 칠성풀잠자리 유래-휘발성물질들에 대한 칠성풀잠자리의 행동 반응

Behavioral Response of the Lacewing Chrysopa cognata to both Aphis gossypii-induced Plant Volatiles and Chrysopa cognata-derived Volatiles

  • 조점래 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 이민호 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 박창규 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김정환 (농촌진흥청 국립농업과학원 작물보호과) ;
  • ;
  • ;
  • Cho, Jum Rae (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Min Ho (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Chang Gyu (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jeong Hwan (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hooper, Tony (Biological Chemistry, Rothamsted Research) ;
  • Woodcock, Christine (Biological Chemistry, Rothamsted Research) ;
  • Pickett, John (Biological Chemistry, Rothamsted Research)
  • 투고 : 2013.04.29
  • 심사 : 2013.09.11
  • 발행 : 2014.03.01

초록

본 연구에서는 목화진딧물(Aphis gossypii)을 접종한 착색단고추(Capsicum annuum L.)에서 방출된 휘발성물질 및 칠성풀잠자리(Chrysopa cognata) 암컷이 분비한 휘발성물질에 대한 칠성풀잠자리 수컷의 반응이 조사되었다. Y-tube olfactometer에서 칠성풀잠자리 수컷 성충은 목화진딧물이 감염되어 있는 착색단고추에 더 많이 이끌렸고, 수 개의 뚜렷한 GC-EAD 반응을 보였다. 이들 GC-EAD 반응을 보인 피크에 대해 GC-MS 및 GC coupled NMR spectroscopy로 분석한 결과, 목화진딧물이 감염된 착색단고추로부터 4-ethylacetophenone, 3-ethylbenzaldehyde, 3-ethylacetophenone 및 4-ethylbenzaldehyde 그리고 칠성풀잠자리 암컷 성충으로부터 (Z,Z)-4,7-tridecadiene, (Z)-4-tridecene 및 (Z)-4-undecene 등이 동정되었다. 야외 포장시험에서 이들 물질 단독으로는 칠성풀잠자리에 대해 유인효과가 없었다. 암컷 성충에서 기원한 (Z)-4-tridecene와 (Z)-4-undecene은 칠성풀잠자리를 유인하지 못하였고, (Z,Z)-4,7-tridecadiene은 nepetalactol의 유인성을 감소시켰다. 하지만 3-ethylbenzaldehyde와 4-ethylacetophenone는 nepetalactol과 함께 혼합하면 칠성풀잠자리에 대한 유인성은 현저하게 증가하였다.

This study was performed to investigate the response of the lacewing Chrysopa cognata to both Aphis gossypii-induced plant volatiles and lacewing-derived volatiles. The results of a Y-tube olfactometer bioassay showed that more C. cognata males were attracted to green pepper plants infected with A. gossypii than to uninfected green pepper plants alone or clean air and C. cognata males were attractive to C. cognata females. Gas chromatography-electroantennographic detection (GC-EAD) analysis showed that the antennae of C. cognata females elicited EAD-active responses to the volatiles entrained from A. gossypii-infected green pepper plants. 4-Ethylacetophenone, 3-ethylbenzaldehyde, 3-ethylacetophenone, and 4-ethylbenzaldehyde from A. gossypii-induced green pepper volatiles, and (Z,Z)-4,7-tridecadiene, (Z)-4-tridecene, and (Z)-4-undecene from C. cognata female entrainment were elucidated by further analysis using GC coupled nuclear magnetic resonance spectroscopy. Of the A. gossypii-induced plant volatiles identified in this study, 4-ethylacetophenone and 3-ethylbenzaldehyde significantly increased the attraction of C. cognata males to nepetalactol, but (Z)-4-tridecene and (Z)-4-undecene did not. (Z,Z)-4,7-Tridecadiene significantly reduced the attractiveness of nepetalactol to C. cognata.

키워드

참고문헌

  1. Boo, K.S., Chung, I.B., Han, K.S., Pickett, J.A., Wadhams, L.J., 1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. J. Chem. Ecol. 24, 631-643. https://doi.org/10.1023/A:1022386001722
  2. Bjostad, L.B., 1998. Electrophysiological methods. in: Millar, J.G., Haynes, K.F. (Eds.), Methods in chemical ecology: chemical methods. Vol. 1. Kluwer Academic Publishers, Boston, pp. 339-375.
  3. Bursell, E., Gough, A.J.E., Beevor, P.S., Cork, A., Hall, D.R., Vale, G.A., 1988. Identification of components of cattle urine attractive to tsetse flies, Glossina spp. (Diptera: Glossinidae). Bull. Ent. Res. 78, 281-291. https://doi.org/10.1017/S0007485300013043
  4. Conn, J.E., Borden, J.H., Scott, B.E., Frieske, L.M., Pierce, H.D., Oehlschlager, A.C., 1983. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) in Br. Columbia: field trapping studies. Can. J. For. Res. 13, 320-324. https://doi.org/10.1139/x83-045
  5. Dicke, M., 1999. Specificity of herbivore-induced plant defenses. in:Chadwich J., Good. J. (Eds.), Insect-plant interactions and Induced plant defense. Novartis Foundation Symposium 223. Wiley, Chichester, United Kingdom, pp. 43-59.
  6. Gough, A.J.E., Hall, D.R., Beevor, P.S., Cork, A., Bursell, E., Vale, G.A., 1987. Attractants for tsetse from cattle urine. Proc. 19th Meeting International Scientific Council for Trypanosomiasis Reserch Control, Lome, Togo, 27 March-4 April.
  7. Gouinguene, S., Alborn, H., Turlings, T.C.J., 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29, 145-162. https://doi.org/10.1023/A:1021984715420
  8. Gouinguene, S.P., Turlings, T.C.J., 2002. The effects of abiotic factors on induced emissions in corn plant. Plant Physiol. 129, 1296-1307. https://doi.org/10.1104/pp.001941
  9. Hartmann, T., 2004. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219, 14. https://doi.org/10.1007/s00425-003-1200-7
  10. Hooper, A.M., Donato, B., Woodcock, C.M., Park, J.H., Paul, R.L., Boo, K.S., Hardie, J., Pickett, J.A., 2002. Characterization of (1R,4S,4aR,7S,7aR)-dihydronepetalactol as a semiochemical for lacewings, including Chrysopa spp. and Peyerimhoffina gracilis. J. Chem. Ecol. 28: 849-864. https://doi.org/10.1023/A:1015201129331
  11. James, D.G., 2003. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ. Entomol. 32, 977-982. https://doi.org/10.1603/0046-225X-32.5.977
  12. James, D.G., Price, T.S., 2004. Field testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 30, 1613-1628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f
  13. Kappmeier, K., Nevill, E.M., 1999. Evaluation of conventional odour attractants for Glossina brevipalpis and Glossina austeni (Diptera: Glossinidae) in South Africa. Onderstepoort J. Vet. Res. 66, 307-316.
  14. Kohnle, U., Mussong, M., Bubbel, V., Francke, W., 1987. Acetophensone in the aggregation of the beech bark beetle, Taphrorychus bicolor (Co., Scolytidae). J. Appl. Entomol. 103, 249-252. https://doi.org/10.1111/j.1439-0418.1987.tb00983.x
  15. Mattiacci, L., Rocca, B.A., Scascighini, N., D'Alessandro, M., Hern, A., Dorn, S., 2001. Systemically-induced plant volatiles emitted at the time of danger. J. Chem. Ecol. 27, 2233-2252. https://doi.org/10.1023/A:1012278804105
  16. McElvain, S.M., Bright, R.D., Johnson, P.R. 1941. The constituents of the volatile oil of catnip. I. Nepetalic acid, nepetalactone, and related compounds. J. Am. Chem. Soc. 63, 1558-1563. https://doi.org/10.1021/ja01851a019
  17. New, T.R.R., 1988. Neuroptera. in: Minks, K., Harrewijn, P. (Eds.), Aphids: their biology, natural enemies and control. Vol. 2B. Elsevier, Amsterdam, pp. 249-258.
  18. Obata, S., 1986. Mechanism of prey finding in the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae). Entomophaga 31, 303-311. https://doi.org/10.1007/BF02373340
  19. Sullivan, R.T., 2005. Electrophysiological and behavioral responses of Dendroctonus frontalis (Coleoptera: Curculionidae) to volatiles isolated from conspecifics. J. Econ. Entomol. 98, 2067-2078. https://doi.org/10.1603/0022-0493-98.6.2067
  20. Turlings, T.C.J., Wäckers, F., 2004. Recruitment of predators and parasitoids by herbivore-injured plants. in: Carde, R.T., Millar, J.G. (Eds.), Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp. 2175.
  21. Wadhams, L.J., 1990. The use of coupled gas chromatography:electrophysiological techniques in the identification of insect pheromones. in: McCaffery, A.R., Wilson, I.D. (Eds.), Chromatography and isolation of insect hormones and pheromones. Plenum Press, New York, pp. 289-298.
  22. Zhang, Q.H., Chauhan, K.R., Erbe, E.F., Vellore, A.R., Aldrich, J.R., 2004. Semiochemistry of the goldeneyed lacewing Chrysopa oculata: attraction of males to a male-produced pheromone. J. Chem. Ecol. 30, 1849-1870. https://doi.org/10.1023/B:JOEC.0000042406.76705.ab
  23. Zhu, J.W., Obrycki, J.J., Ochieng, S.A., Baker, T.C., Pickett, J.A., Smiley, D., 2005. Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften 92, 277-281. https://doi.org/10.1007/s00114-005-0624-2
  24. Zhu, J.W., Unelius, R.C., Park, K.C., Ochieng, S.A., Obrycki, J.J., Baker, T.C., 2000. Identification of (Z)-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea. J. Chem. Ecol. 26, 2421-2434. https://doi.org/10.1023/A:1005587113469

Cited by

  1. Chemical Ecology of Neuroptera vol.61, pp.1, 2016, https://doi.org/10.1146/annurev-ento-010715-023507
  2. Field Trapping of Predaceous Insects With Synthetic Herbivore-Induced Plant Volatiles in Cotton Fields vol.47, pp.1, 2017, https://doi.org/10.1093/ee/nvx201