• Title/Summary/Keyword: Plant volatiles

Search Result 39, Processing Time 0.032 seconds

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

  • Mannaa, Mohamed;Oh, Ji Yeon;Kim, Ki Deok
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Attractiveness of Host Plant Volatiles and Sex Pheromone to the Blueberry Gall Midge (Dasineura oxycoccana) (블루베리혹파리에 대한 기주식물 휘발성 물질과 성페로몬의 유인 효과)

  • Yang, Chang Yeol;Seo, Mi Hye;Yoon, Jung Beom;Shin, Yong Seub;Choi, Byeong Ryeol
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.393-398
    • /
    • 2020
  • The blueberry gall midge, Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae), is an emerging pest on cultivated blueberries in Korea. To develop a sensitive tool for monitoring this pest in blueberry orchards, we compared the attractiveness of host plant volatiles and sex pheromone to D. oxycoccana adults. We performed gas chromatography-mass spectrometry (GC-MS) analysis of solid-phase microextraction (SPME)-collected volatiles that were released from blueberry ('Darrow' cultivar). The analysis revealed two major volatiles, cinnamaldehyde and cinnamyl alcohol from flowers; and three major volatiles, β-caryophyllene, germacrene D, and α-farnesene from shoots and young fruits. In field tests conducted in Gunsan, Korea in 2019, commercialized cinnamaldehyde, cinnamyl alcohol, β-caryophyllene, and α-farnesene, used singly or in quaternary combination, were unattractive to the blueberry gall midge. However, traps baited with the known sex pheromone (2R,14R)-2,14-diacetoxyheptadecane attracted significantly more males than the treatments with plant volatiles or the control. No synergistic effect was observed between sex pheromone and plant volatiles. Male D. oxycoccana were captured in the pheromone traps from May to August, with three peaks in mid-May, late June, and late July in Gunsan blueberry fields in 2020.

Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance

  • Ryu, Choong-Min;Farag, Mohammed A.;Pare, Paul. W.;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • Plant growth-promoting rhizobacteria (PGPR) are a wide range of root-colonizing bacteria with the capacity to enhance plant growth and control plant pathogens. Here we review recent progress that indicate some PGPR strains release a blend of volatile organic compounds (VOCs) that promote growth in Arabidopsis seedlings and induce resistance against Erwinia carotovora subsp. carotovora. In particular, the volatile components 2,3-butanediol and acetoin released exclusively from the PGPR strains triggered the greatest level of growth promotion and induced systemic resistance. Pharmacological applications of 2,3-butanediol promoted the plant growth and induced resistance, while bacterial mutants blocked in 2,3-butanediol and acetoin synthesis was devoid of growth-promotion and induced resistance capacities. The results suggested that the bacterial VOCs play a critical role in the plant growth promotion and induced resistance by PGPR. Using transgenic and mutant lines of Arabidopsis, we provide evidences that the signal pathway activated by volatiles from one PGPR strain is dependent on cyto-kinin activation for growth promotion and dependent on an ethylene-signaling pathway for induced pathogen resistance. This discovery provides new insight into the role of bacterial VOCs as initiators of both plant growth promotion and defense responses in plants.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

Behavioral Response of the Lacewing Chrysopa cognata to both Aphis gossypii-induced Plant Volatiles and Chrysopa cognata-derived Volatiles (목화진딧물 감염 식물 및 칠성풀잠자리 유래-휘발성물질들에 대한 칠성풀잠자리의 행동 반응)

  • Cho, Jum Rae;Lee, Min Ho;Park, Chang Gyu;Kim, Jeong Hwan;Hooper, Tony;Woodcock, Christine;Pickett, John
    • Korean journal of applied entomology
    • /
    • v.53 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • This study was performed to investigate the response of the lacewing Chrysopa cognata to both Aphis gossypii-induced plant volatiles and lacewing-derived volatiles. The results of a Y-tube olfactometer bioassay showed that more C. cognata males were attracted to green pepper plants infected with A. gossypii than to uninfected green pepper plants alone or clean air and C. cognata males were attractive to C. cognata females. Gas chromatography-electroantennographic detection (GC-EAD) analysis showed that the antennae of C. cognata females elicited EAD-active responses to the volatiles entrained from A. gossypii-infected green pepper plants. 4-Ethylacetophenone, 3-ethylbenzaldehyde, 3-ethylacetophenone, and 4-ethylbenzaldehyde from A. gossypii-induced green pepper volatiles, and (Z,Z)-4,7-tridecadiene, (Z)-4-tridecene, and (Z)-4-undecene from C. cognata female entrainment were elucidated by further analysis using GC coupled nuclear magnetic resonance spectroscopy. Of the A. gossypii-induced plant volatiles identified in this study, 4-ethylacetophenone and 3-ethylbenzaldehyde significantly increased the attraction of C. cognata males to nepetalactol, but (Z)-4-tridecene and (Z)-4-undecene did not. (Z,Z)-4,7-Tridecadiene significantly reduced the attractiveness of nepetalactol to C. cognata.

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.52-63
    • /
    • 2018
  • In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.

Chemical Fungicides and Bacillus siamensis H30-3 against Fungal and Oomycete Pathogens Causing Soil-Borne Strawberry Diseases

  • Park, Bo Reen;Son, Hyun Jin;Park, Jong Hyeob;Kim, Eun Soo;Heo, Seong Jin;Youn, Hae Ree;Koo, Young Mo;Heo, A Yeong;Choi, Hyong Woo;Sang, Mee Kyung;Lee, Sang-Woo;Choi, Sung Hwan;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.79-85
    • /
    • 2021
  • Chemical and biological agents were evaluated to inhibit Colletotrichum fructicola, Phytophthora cactorum, and Lasiodiplodia theobromae causing strawberry diseases. Mycelial growths of C. fructicola were gradually arrested by increasing concentrations of fungicides pyraclostrobin and iminoctadine tris (albesilate). P. cactorum and L. theobromae were more sensitive to pyraclostrobin compared to C. fructicola, but iminoctadine tris (albesilate) was not or less effective to limit P. cactorum or L. theobromae, respectively. Bacillus siamensis H30-3 was antagonistic against the three pathogens by diffusible as well as volatile molecules, and evidently reduced aerial mycelial formation of P. cactorum. B. siamensis H30-3 growth was declined by at least 0.025 mg/ml of pyraclostrobin. The two fungicides additively inhibited mycelial growths of C. fructicola, but not of P. cactorum and L. theobromae. B. siamensis H30-3 volatiles led to less growth of C. fructicola than one reduced by the fungicides. Taken together, in vitro antimicrobial activities of the two fungicides together with or without B. siamensis H30-3 volatiles may be cautiously incorporated into integrated management of strawberry diseases dependent on causal pathogens.