DOI QR코드

DOI QR Code

Oxidation of Benzylic Alcohols with Urea Hydrogen Peroxide/Calcium Chloride in PEGDME250

  • Received : 2013.08.01
  • Accepted : 2013.11.09
  • Published : 2014.02.20

Abstract

Keywords

Experimental

All the alcohols and PEGDME250 were purchased from Aldrich and used as received. The reactions were checked by TLC using silica gel plates. Merck silica gel 60 (230-400 mesh) was used for flash column chromatography. 1H NMRspectra were measured by the Varian Gemini 2000 (300MHz) spectrometer tetramethylsilane as an internal standard and CDCl3 as a solvent. Mass spectra were recorded with a Micromass Autospectrometer. All products were known and identified by comparison of their 1H NMR spectra with those of reported literature data.

General Procedure. A mixture of benzylic alcohol (1.0 mmol), urea hydrogen peroxide (1.5 mmol) and calcium chloride (0.5 mmol) was stirred in PEGDME250 (2 mL) at 70 oC for 4 h. After cooling the mixture to room temperature the product is extracted into diethyl ether (3 × 20 mL), washed with water and dried over MgSO4. The combined ether extracts were concentrated under reduced pressure and the crude product was purified by flash column chromatography (ethyl acetate/n-hexane = 1:3, v/v) to give the desired carbonyl compound.

References

  1. Tojo, G.; Fernandez, M., Eds., Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; Springer: Berlin, 2006.
  2. Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Tetrahedron Lett. 2004, 60, 11415. https://doi.org/10.1016/j.tet.2004.09.087
  3. Cosner, C. C.; Cabrera, P. J.; Byrd, K. M.; Adams Thomas, A. M.; Helquist, P. Org. Lett. 2011, 13, 2071. https://doi.org/10.1021/ol200441g
  4. Shen, S.-S.; Kartika, V.; Tan, Y. S.; Webster, R. D. Narasaka, K. Tetrahedron Lett. 2012, 53, 986. https://doi.org/10.1016/j.tetlet.2011.12.058
  5. Lei, M.; Hu, R.-J.; Wang, Y.-G. Tetrahedron 2006, 62, 8928. https://doi.org/10.1016/j.tet.2006.07.022
  6. Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org. Lett. 2000, 2, 1173. https://doi.org/10.1021/ol005792g
  7. Schultz, M. J.; Alder, R. S.; Zierkiewicz, W.; Privalov, T.; Sigman, M. S. J. Am. Chem. Soc. 2005, 127, 8499. https://doi.org/10.1021/ja050949r
  8. Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. J. J. Org. Chem. 1998, 63, 1750. https://doi.org/10.1021/jo971965c
  9. Jiang, B.; Feng, Y.; Ison, E. A. J. Am. Chem. Soc. 2008, 130, 14462. https://doi.org/10.1021/ja8049595
  10. Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett. 1998, 39, 5323. https://doi.org/10.1016/S0040-4039(98)00987-3
  11. Jiang, N.; Ragauskas, A. J. J. Org. Chem. 2006, 71, 7087. https://doi.org/10.1021/jo060837y
  12. Sawyer, D. T.; Sobkowiak, A.; Matsushita, T. Acc. Chem. Res. 1996, 29, 409. https://doi.org/10.1021/ar950031c
  13. Neumann, R.; Gara, M. J. Am. Chem. Soc. 1995, 117, 5066. https://doi.org/10.1021/ja00123a008
  14. Shabani, A.; Lee, D. G. Tetrahedron Lett. 2001, 42, 5833. https://doi.org/10.1016/S0040-4039(01)01129-7
  15. Mardani, H. R.; Golchoubian, H. Tetrahedron Lett. 2006, 47, 2349. https://doi.org/10.1016/j.tetlet.2006.02.007
  16. Ni, J.; Yu, W.-J.; He, L.; Sun, H.; Cao, Y.; He, H.-Y.; Fan, K.-N. Green Chem. 2009, 11, 756. https://doi.org/10.1039/b820197h
  17. Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 2, 189.
  18. Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. Synlett 1990, 533.
  19. Heaney, H.; Newbold, A. J. Tetrahedron Lett. 2001, 42, 6607. https://doi.org/10.1016/S0040-4039(01)01332-6
  20. Pavlinac, J.; Zupan, M.; Stavber, S. Org. Biomol. Chem. 2007, 5, 699. https://doi.org/10.1039/b614819k
  21. Filipan-Litvi , M.; Litvi , M.; Vinkovi , V. Tetrahedron 2008, 64, 5649. https://doi.org/10.1016/j.tet.2008.04.040
  22. Lehtimaa, T.; Kuitunen, S.; Tarvo, V.; Vuorinen, T. Ind. Eng. Chem. Res. 2010, 49, 2688. https://doi.org/10.1021/ie9018885

Cited by

  1. . vol.45, pp.34, 2014, https://doi.org/10.1002/chin.201434040
  2. Synthesis of benzoquinoline derivatives from formyl naphthylamines via Friedländer annulation under metal-free conditions vol.149, pp.11, 2018, https://doi.org/10.1007/s00706-018-2268-x
  3. Poly(ethylene glycol) dimethyl ether mediated oxidative scission of aromatic olefins to carbonyl compounds by molecular oxygen vol.11, pp.23, 2014, https://doi.org/10.1039/d1ra02007b