Abstract
University ranking models, though they consider multiple indicators to evaluate universities, determine the overall score of each university based on their own normalization and aggregation methods. Thus, the rankings provided by such models primarily depend on actual scores of evaluation indicators, but they are also significantly affected by the normalization and aggregation methods. We examine the normalization methods of four university ranking models used in South Korea, China, and United Kingdom. We discuss a possible unintended consequence of these methods, i.e., some universities who want to improve their rankings may focus on unnecessary indicators, contrary to the evaluator's intension, due to the normalization methods. We suggest a new normalization method based on the statistical characteristics of the distribution of each evaluation indicator so that the new method can motivate the universities to move into the desirable directions intended by the evaluator.