참고문헌
- Breiman, L. (2001), Random forests, Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification and regression trees, Wadsworth, CA, USA.
- Burges, C. J. C. (1998), A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167. https://doi.org/10.1023/A:1009715923555
- Chea, J.-S., Cho, E.-H., and Eom, H.-J. (2010), Comparisons of the outcomes of statistical models applied to the prediction of post-season entry in Korean professional baseball, The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science, 12(1), 33-48.
- Hong, C., Jung, M., and Lee, J. (2010), Prediction model analysis of 2010 South Africa world cup, Journal of the Korean data and information science society, 21(6), 1137-1146.
- Hong, S., Jung, K., and Chung, T. (2003), Win/Lose prediction system : Predicting baseball game results using a hybrid machine learning model, Journal of Korea Information Science Society : Computing Practices, 9(6), 693-698.
- Jensen, S. T., McShane, B. B., and Wyner, A. J. (2009), Hierarchical Bayesian modeling of hitting performance in baseball, Bayesian Analysis, 4(4), 631-652. https://doi.org/10.1214/09-BA424
- Jun, C.-H. (2012), Data Mining Techniques and Applications, Hannarae, Seoul, Korea.
- Kim, C. (2001), A win-loss predicting model by analyzing professional baseball game, Journal of Sport and Leisure Studies, 16, 807-819.
- Kim, D., Lee, S., and Kim, Y. (2007), Prediction for 2006 Germany world cup using Bradley-Terry model, The Korean journal of applied statistics, 20(2), 205-218. https://doi.org/10.5351/KJAS.2007.20.2.205
- Kim, J. H., Ro, G. T., Park, J. S., and Lee, W. H. (2007), The development of soccer game win-lost prediction model using neural network analysis : FIFA world cup 2006 Germany, Korean Journal of Sport Science, 18(4), 54-63. https://doi.org/10.24985/kjss.2007.18.4.54
- Kim, N.-K. and Park, H.-M. (2011), Predicting the score of a soccer match by use of a Markovian arrival process, IE Interfaces, 24(4), 323-329. https://doi.org/10.7232/IEIF.2011.24.4.323
- Koo, S., Kim, H., and Chang, S. (2009), A comparative study on win-loss prediction models for Korean professional basketball, Korean Journal of Sport Science, 20(4), 704-711. https://doi.org/10.24985/kjss.2009.20.4.704
- Korean Baseball Organization (2013), 2013 KBO Annual Report, Korean Baseball Organization, Seoul, Korea.
- Lee, D.-J. and Yang, W. M. (2004), Performance evaluations of professional baseball players using DEA/OERA, IE Interfaces, 17(4), 440-449.
- Lewis, M. M. (2004), Moneyball : The Art of Winning an Unfair Game, W. W. Norton and Company, NY, USA.
- Miljkovic, D., Gajic, L., Kovacevic, A., and Konjovic, Z. (2010), The use of data mining for basketball matches outcomes prediction, Proceedings of the 8th International Symposium on Intelligent Systems and Informatics, 309-312.
- Min, D. K. and Hyun, M. S. (2009), Prediction of a winner in PGA tournament using neural network, Journal of the Korean data and information science society, 20(6), 1119-1127.
- Null, B. (2009), Modeling baseball player ability with a nested Dirichlet distribution, Journal of Quantitative Analysis in Sports, 5(2), 1-36.
- Odachowski, K. and Grekow, J. (2013), Using bookmaker odds to predict the final result of football matches, Lecture Notes in Artificial Intelligence, 7828, 196-205.
- Oh, K.-M. and Lee, J.-T. (2003), A model study on salaries of Korean pro-baseball players using data mining, Journal of Korean Sociology of Sport, 16(2), 295-309.
- Seidman, C. (2002), MS SQL server2000 data mining (Technical Reference).
- Sung, H. and Chang, W. (2007), Forecasting the results of soccer matches using poisson model, IE Interfaces, 20(2), 133-141.