과제정보
연구 과제 주관 기관 : VIEP-BUAP, CONACyT
참고문헌
- Berry, C.C. and Curtis, A.S.G. (2003), "Functionalisation of magnetic nanoparticles for applications in biomedicine", J. Phys. D: Appl. Phys., 36(13), R198-R206. https://doi.org/10.1088/0022-3727/36/13/203
- Blin, B., Fievet, F., Beaupere, D. and Filglarz, M. (1989), "Oxydation duplicative de l'ethylene glycol dans un nouveau procede de preparation de poudres metalliques", Nouv. J. Chim., 13, 67-72.
- Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370. https://doi.org/10.1016/j.jcis.2006.10.023
- Cha, J., Lee, J.S., Yoon, S.J., Kim, Y.K. and Lee, J.K. (2013), "Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters", RSC Adv., 3(11), 3631-3637. https://doi.org/10.1039/c3ra21639j
- Chen, Y., Xia, H., Lu, L. and Xue, J. (2012) "Synthesis of porous hollow Fe3O4 beads and their application in lithium ion batteries", J. Mater. Chem., 22, 5006-5012. https://doi.org/10.1039/c2jm15440d
- Chin, S.F., Pang, S.C. and Tan, C.H. (2011), "Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape", J. Mater. Environ. Sci., 2(3) 299-302.
- Ching, C.J., Yiacoumi, S. and Tsouris, C. (2002), "Agglomeration of magnetic particles and breakup of magnetic chains in surfactant solutions", Coll. Surf. A: Physicochem. Eng. Aspect., 204(1-3), 63-72. https://doi.org/10.1016/S0927-7757(01)01124-4
- De Faria, D.L.A., Venancio Silva, S. and de Oliveira, M.T. (1997), "Raman microspectroscopy of some iron oxides and oxyhydroxides", J. Raman Spectrosc., 28(11), 873-878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
- Dai, Q., Berman, D., Virwani, K., Frommer, J., Jubert, P.O., Lam, M., Topuria, T., Imaino, W. and Nelson, A. (2010), "Self-assembled ferrimagnet-polymer composites for magnetic recording media", Nano Lett., 10(8), 3216-3221. https://doi.org/10.1021/nl1022749
- Degiorgi, L., Blatter-Morke, I. and Wachter, P. (1987), "Magnetite: phonon modes and the Verwey transition", Phys. Rev. B, 35(11), 5421-5424. https://doi.org/10.1103/PhysRevB.35.5421
- Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. and Li, Y. (2005), "Monodisperse magnetic single-crystal ferrite microspheres", Angew. Chem. Int. Ed., 44(18), 2782-2785. https://doi.org/10.1002/anie.200462551
-
Deng, Y., Qi, D., Deng, C., Zhang, X. and Zhao, D. (2008), "Superparamagnetic high-magnetization microspheres with a
$Fe_3O_4$ @Si$O_2$ core and perpendicularly aligned mesoporous Si$O_2$ shell for removal of microcystins", J. Am. Chem. Soc., 130(1), 28-29. https://doi.org/10.1021/ja0777584 - Devadasu, V.R., Bhardwaj, V. and Ravi Kumar, M.N.V. (2013), "Can controversial nanotechnology promise drug delivery?", Chem. Rev., 113(3), 1686-1735. https://doi.org/10.1021/cr300047q
- Guardia, P., Batlle-Brugal, B., Roca, A.G., Iglesias, O., Morales, M.P., Serna, C.J., Labarta, A. and Batlle, X. (2007), "Surfactant effects in monodisperse magnetite nanoparticles of controlled size", J. Magn. Magn. Mater., 316(2), e756-e759. https://doi.org/10.1016/j.jmmm.2007.03.085
- Ha, N.T., Hai, N.H., Luong, N.H., Chau, N. and Chinh, H.D. (2008), "Effects of the conditions of the microemulsion preparation on the properties of Fe3O4 nanoparticles", VNU J. Sci. Natl. Sci. Technol., 24, 9-15.
- Han, D.H., Wang, J.P. and Luo, H.L. (1994), "Crystallite size effect on saturation magnetization of fine ferrimagnetic particles", J. Magn. Magn. Mater., 136(1-2), 176-182. https://doi.org/10.1016/0304-8853(94)90462-6
- Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M. and Lim, H.N. (2010), "Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents", Ceram. Int., 36(4), 1417-1422. https://doi.org/10.1016/j.ceramint.2010.02.005
- Hu, P., Yu, L., Zuo, A., Guo, C. and Yuan, F. (2009), "Fabrication of monodisperse magnetite hollow spheres", J. Phys. Chem. C, 113(3), 900-906. https://doi.org/10.1021/jp806406c
- Huh, Y.M., Jun, Y.W., Song, H.T., Kim, S., Choi, J.S., Lee, J.H., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals", J. Am. Chem. Soc., 127(35), 12387-12391. https://doi.org/10.1021/ja052337c
- Iida, H., Takayanagi, K., Nakanishi, T. and Osaka, T. (2007), "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis", J. Coll. Interf. Sci., 314(1), 274-280. https://doi.org/10.1016/j.jcis.2007.05.047
- Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging", J. Am. Chem. Soc., 127(16), 5732-5733. https://doi.org/10.1021/ja0422155
- Jung, H., Kim, J.W., Choi, H., Lee, J.H. and Hur, H.G. (2008), "Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation", Appl. Catal. B: Environ., 83(3-4), 208-213. https://doi.org/10.1016/j.apcatb.2008.02.016
-
Kumar, S., Rajesh Raja, M., Manivel Mangalaraj, D., Viswanathan, C. and Ponpandian, N. (2013) "Surfactant free solvothermal synthesis of monodispersed 3D hierarchical
$Fe_3O_4$ microspheres", Mater. Lett. 110, 98-101. https://doi.org/10.1016/j.matlet.2013.08.005 -
Larumbe, S., Gomez Polo, C., Perez Landazabal, J.I. and Pastor, J.M. (2012), "Effect of a
$SiO_2$ coating on the magnetic properties of$Fe_3O_4$ nanoparticles ", J. Phys.: Cond. Matter., 24(26), 266007-266013. https://doi.org/10.1088/0953-8984/24/26/266007 - Legodi, M.A. and de Waal, D. (2007), "The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste", Dye. Pigmen., 74(1), 161-168. https://doi.org/10.1016/j.dyepig.2006.01.038
- Libert, S., Gorshkov, V., Goia, D., Matijevic, E. and Privman, V. (2003), "Model of controlled synthesis of uniform colloid particles: cadmium sulfide", Langimur, 19(26), 10679-10683. https://doi.org/10.1021/la0302044
- Liu, Z.L., Wang, X., Yao, K.L., Du, G.H., Lu, Q.H., Ding, Z.H., Tao, J., Ning, Q., Luo, X.P., Tian, D.Y. and Xi, D. (2004), "Synthesis of magnetite nanoparticles in W/O microemulsion", J. Mater. Sci., 39(7), 2633-2636. https://doi.org/10.1023/B:JMSC.0000020046.68106.22
- Marchegiani, G., Imperatori, P., Mari, A., Pilloni, L., Chiolerio, A., Allia, P., Tiberto, P. and Suber, L. (2012), "Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles", Ultra. Sonochem., 19(4), 877-882. https://doi.org/10.1016/j.ultsonch.2011.12.007
- Mascolo, M.C., Pei, Y. and Ring, T.A. (2013), "Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases", Mater., 6(12), 5549-5567. https://doi.org/10.3390/ma6125549
- Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H. and Hyeon, T. (2005), "One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles", Angew. Chem. Int. Ed., 44(19), 2872-2877. https://doi.org/10.1002/anie.200461665
- Park, J., An, K., Hwang, Y., Park, J., Noh, H., Kim, J., Park, J., Hwang, N. and Hyeon, T. (2004), "Ultralarge-scale syntheses of monodisperse nanocrystals", Nat. Mater., 3, 891-895. https://doi.org/10.1038/nmat1251
- Parkinson, G.S., Novotny, Z., Jacobson, P., Schmid, M. and Diebold, U. (2011), "Room temperature water splitting at the surface of magnetite", J. Am. Chem. Soc., 133(32), 12650-12655. https://doi.org/10.1021/ja203432e
- Ravikumar, C. and Bandyopadhyaya, R. (2011), "Mechanistic study on magnetite nanoparticle formation by thermal decomposition and coprecipitation routes", J. Phys. Chem. C, 115(5), 1380-1387.
- Roullin, V.G., Deverre, J.R., Lemaire, L., Hindre, F., Venier-Julienne, M.C., Vienet, R. and Benoit, J.P. (2002), "Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres", Eur. J. Pharm. Biopharm., 53(3), 293-299. https://doi.org/10.1016/S0939-6411(02)00011-5
- Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotty, R.A., Rouquerol, J. and Siemieniewska, T. (1985), "Reporting physisorpyion data for gas/solid systems. With special reference to determination of surface area and porosity (recommendations 1984)", Pure Appl. Chem., 57(4), 603-619.
- Song, Y., Wang, R., Rong, R., Ding, J., Liu, J., Li, R., Liu, Z., Li, H., Wang, X., Zhang, J. and Fang, J. (2011), "Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as an MRI contrast agent for the reticuloendothelial system", Eur. J. Inorg. Chem., 2011(22), 3303-3313. https://doi.org/10.1002/ejic.201100017
-
Sun, X., Zheng, C., Zhang, F., Yang, Y., Wu, G., Yu, A. and Guan, N. (2009), "Size-controlled synthesis of magnetite (
$Fe_3O_4$ ) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method", J. Phys. Chem. C, 113(36), 16002-16008. - Wu, W., He, Q., Chen, H., Tang, J. and Nie, L. (2007), "Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles", Nanotech., 18(14), 145609-145617. https://doi.org/10.1088/0957-4484/18/14/145609
- Xu, Z., Li, C., Kang, X., Yang, D., Yang, P., Hou, Z. and Lin, J. (2010), "Synthesis of a multifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties", J. Phys. Chem. C, 114(39), 16343-16350. https://doi.org/10.1021/jp106325c
-
Xuang, S., Wang, F., Lai, J.M.Y., Sham, K.W.Y., Wang, Y.X.J., Lee, S.F., Yu, J.C., Cheng, C.H.K. and Leung, K.C.F. (2011), "Synthesis of biocompatible, mesoporous
$Fe_3O_4$ nano/microspheres with large surface area for magnetic resonance imaging and therapeutic application", ACS Appl. Mater. Interf., 3, 237-244. https://doi.org/10.1021/am1012358 - Yu, B.Y. and Kwak, S.Y. (2011), "Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinelnanocrystals prepared using a template-free approach", Dalton Trans., 40(39), 9989-9998. https://doi.org/10.1039/c1dt10650c
-
Zhao, S.Y., Lee, D.K., Kim, C.W., Cha, H.G., Kim, Y.H. and Kang, Y.S. (2006), "Synthesis of magnetic nanoparticles of
$Fe_3O_4$ and$CoFe_2O_4$ and their surface modification by surfactant adsorption", Bull. Korean Chem. Soc., 27(2), 237-242. https://doi.org/10.5012/bkcs.2006.27.2.237 - Zhu, M. and Diao, G. (2011), "Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange", J. Phys. Chem. C, 115(39), 18923-18934. https://doi.org/10.1021/jp200418j
피인용 문헌
- Crossover magnetic amphiprotic catalysts for oil/water separation, the purification of aqueous and non-aqueous pollutants, and organic synthesis vol.331, 2018, https://doi.org/10.1016/j.cej.2017.08.120
- Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle 2018, https://doi.org/10.1007/s10948-017-4428-3
- Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment vol.7, pp.12, 2017, https://doi.org/10.3390/nano7120426
- Tunable Synthesis of Hierarchical Superparamagnetic Fe3O4 Nanospheres by a Surfactant-Free Solvothermal Method 2018, https://doi.org/10.1007/s10948-017-4533-3
- Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method pp.1573-4803, 2018, https://doi.org/10.1007/s10853-018-3030-9
- An anti-overturn Janus sponge with excellent floating stability for simultaneous pollutant remediation and oil/water separation vol.6, pp.34, 2018, https://doi.org/10.1039/C8TA04462G
- Synthesis and Properties of Mesoporous Maghemite vol.133, pp.4, 2018, https://doi.org/10.12693/APhysPolA.133.1035
- On the preparation and characterization of superparamagnetic nanoparticles with Gelidium robustum agar coating for biomedical applications vol.41, pp.2, 2018, https://doi.org/10.1007/s12034-018-1546-x
- A lottery draw machine-inspired movable air filter with high removal efficiency and low pressure drop at a high flow rate vol.7, pp.11, 2014, https://doi.org/10.1039/c9ta00100j
- Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method vol.6, pp.12, 2014, https://doi.org/10.1088/2053-1591/ab65e0
- Preparation and Characterization of Magnetic Biochar Nanocomposites via a Modified Solvothermal Method and Their Use as Efficient Heterogeneous Fenton-like Catalysts vol.59, pp.5, 2014, https://doi.org/10.1021/acs.iecr.9b04590
- Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water vol.12, pp.13, 2020, https://doi.org/10.3390/su12135489
- Synthesis, Electrochemical Studies, and Antimicrobial Properties of Fe 3 O 4 Nanoparticles from Callistemon viminalis Plant Extracts vol.13, pp.21, 2014, https://doi.org/10.3390/ma13214894
- Study of the adsorption activity of Fe3O4 synthesized by the solvothermal method in relation to doxorubicin vol.10, pp.12, 2014, https://doi.org/10.1007/s13204-020-01417-8
- The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-96465-7
- Polystyrene magnetic nanocomposite blend: An effective, facile, and economical alternative in oil spill removal applications vol.286, pp.p2, 2014, https://doi.org/10.1016/j.chemosphere.2021.131611