DOI QR코드

DOI QR Code

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process

  • Madrid, Sergio I. Uribe (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla) ;
  • Pal, Umapada (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla) ;
  • Jesus, Felix Sanchez-De (Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo)
  • Received : 2014.08.05
  • Accepted : 2015.01.14
  • Published : 2014.12.25

Abstract

Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.

Keywords

Acknowledgement

Supported by : VIEP-BUAP, CONACyT

References

  1. Berry, C.C. and Curtis, A.S.G. (2003), "Functionalisation of magnetic nanoparticles for applications in biomedicine", J. Phys. D: Appl. Phys., 36(13), R198-R206. https://doi.org/10.1088/0022-3727/36/13/203
  2. Blin, B., Fievet, F., Beaupere, D. and Filglarz, M. (1989), "Oxydation duplicative de l'ethylene glycol dans un nouveau procede de preparation de poudres metalliques", Nouv. J. Chim., 13, 67-72.
  3. Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370. https://doi.org/10.1016/j.jcis.2006.10.023
  4. Cha, J., Lee, J.S., Yoon, S.J., Kim, Y.K. and Lee, J.K. (2013), "Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters", RSC Adv., 3(11), 3631-3637. https://doi.org/10.1039/c3ra21639j
  5. Chen, Y., Xia, H., Lu, L. and Xue, J. (2012) "Synthesis of porous hollow Fe3O4 beads and their application in lithium ion batteries", J. Mater. Chem., 22, 5006-5012. https://doi.org/10.1039/c2jm15440d
  6. Chin, S.F., Pang, S.C. and Tan, C.H. (2011), "Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape", J. Mater. Environ. Sci., 2(3) 299-302.
  7. Ching, C.J., Yiacoumi, S. and Tsouris, C. (2002), "Agglomeration of magnetic particles and breakup of magnetic chains in surfactant solutions", Coll. Surf. A: Physicochem. Eng. Aspect., 204(1-3), 63-72. https://doi.org/10.1016/S0927-7757(01)01124-4
  8. De Faria, D.L.A., Venancio Silva, S. and de Oliveira, M.T. (1997), "Raman microspectroscopy of some iron oxides and oxyhydroxides", J. Raman Spectrosc., 28(11), 873-878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
  9. Dai, Q., Berman, D., Virwani, K., Frommer, J., Jubert, P.O., Lam, M., Topuria, T., Imaino, W. and Nelson, A. (2010), "Self-assembled ferrimagnet-polymer composites for magnetic recording media", Nano Lett., 10(8), 3216-3221. https://doi.org/10.1021/nl1022749
  10. Degiorgi, L., Blatter-Morke, I. and Wachter, P. (1987), "Magnetite: phonon modes and the Verwey transition", Phys. Rev. B, 35(11), 5421-5424. https://doi.org/10.1103/PhysRevB.35.5421
  11. Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. and Li, Y. (2005), "Monodisperse magnetic single-crystal ferrite microspheres", Angew. Chem. Int. Ed., 44(18), 2782-2785. https://doi.org/10.1002/anie.200462551
  12. Deng, Y., Qi, D., Deng, C., Zhang, X. and Zhao, D. (2008), "Superparamagnetic high-magnetization microspheres with a $Fe_3O_4$@Si$O_2$ core and perpendicularly aligned mesoporous Si$O_2$ shell for removal of microcystins", J. Am. Chem. Soc., 130(1), 28-29. https://doi.org/10.1021/ja0777584
  13. Devadasu, V.R., Bhardwaj, V. and Ravi Kumar, M.N.V. (2013), "Can controversial nanotechnology promise drug delivery?", Chem. Rev., 113(3), 1686-1735. https://doi.org/10.1021/cr300047q
  14. Guardia, P., Batlle-Brugal, B., Roca, A.G., Iglesias, O., Morales, M.P., Serna, C.J., Labarta, A. and Batlle, X. (2007), "Surfactant effects in monodisperse magnetite nanoparticles of controlled size", J. Magn. Magn. Mater., 316(2), e756-e759. https://doi.org/10.1016/j.jmmm.2007.03.085
  15. Ha, N.T., Hai, N.H., Luong, N.H., Chau, N. and Chinh, H.D. (2008), "Effects of the conditions of the microemulsion preparation on the properties of Fe3O4 nanoparticles", VNU J. Sci. Natl. Sci. Technol., 24, 9-15.
  16. Han, D.H., Wang, J.P. and Luo, H.L. (1994), "Crystallite size effect on saturation magnetization of fine ferrimagnetic particles", J. Magn. Magn. Mater., 136(1-2), 176-182. https://doi.org/10.1016/0304-8853(94)90462-6
  17. Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M. and Lim, H.N. (2010), "Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents", Ceram. Int., 36(4), 1417-1422. https://doi.org/10.1016/j.ceramint.2010.02.005
  18. Hu, P., Yu, L., Zuo, A., Guo, C. and Yuan, F. (2009), "Fabrication of monodisperse magnetite hollow spheres", J. Phys. Chem. C, 113(3), 900-906. https://doi.org/10.1021/jp806406c
  19. Huh, Y.M., Jun, Y.W., Song, H.T., Kim, S., Choi, J.S., Lee, J.H., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals", J. Am. Chem. Soc., 127(35), 12387-12391. https://doi.org/10.1021/ja052337c
  20. Iida, H., Takayanagi, K., Nakanishi, T. and Osaka, T. (2007), "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis", J. Coll. Interf. Sci., 314(1), 274-280. https://doi.org/10.1016/j.jcis.2007.05.047
  21. Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging", J. Am. Chem. Soc., 127(16), 5732-5733. https://doi.org/10.1021/ja0422155
  22. Jung, H., Kim, J.W., Choi, H., Lee, J.H. and Hur, H.G. (2008), "Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation", Appl. Catal. B: Environ., 83(3-4), 208-213. https://doi.org/10.1016/j.apcatb.2008.02.016
  23. Kumar, S., Rajesh Raja, M., Manivel Mangalaraj, D., Viswanathan, C. and Ponpandian, N. (2013) "Surfactant free solvothermal synthesis of monodispersed 3D hierarchical $Fe_3O_4$ microspheres", Mater. Lett. 110, 98-101. https://doi.org/10.1016/j.matlet.2013.08.005
  24. Larumbe, S., Gomez Polo, C., Perez Landazabal, J.I. and Pastor, J.M. (2012), "Effect of a $SiO_2$ coating on the magnetic properties of $Fe_3O_4$ nanoparticles ", J. Phys.: Cond. Matter., 24(26), 266007-266013. https://doi.org/10.1088/0953-8984/24/26/266007
  25. Legodi, M.A. and de Waal, D. (2007), "The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste", Dye. Pigmen., 74(1), 161-168. https://doi.org/10.1016/j.dyepig.2006.01.038
  26. Libert, S., Gorshkov, V., Goia, D., Matijevic, E. and Privman, V. (2003), "Model of controlled synthesis of uniform colloid particles: cadmium sulfide", Langimur, 19(26), 10679-10683. https://doi.org/10.1021/la0302044
  27. Liu, Z.L., Wang, X., Yao, K.L., Du, G.H., Lu, Q.H., Ding, Z.H., Tao, J., Ning, Q., Luo, X.P., Tian, D.Y. and Xi, D. (2004), "Synthesis of magnetite nanoparticles in W/O microemulsion", J. Mater. Sci., 39(7), 2633-2636. https://doi.org/10.1023/B:JMSC.0000020046.68106.22
  28. Marchegiani, G., Imperatori, P., Mari, A., Pilloni, L., Chiolerio, A., Allia, P., Tiberto, P. and Suber, L. (2012), "Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles", Ultra. Sonochem., 19(4), 877-882. https://doi.org/10.1016/j.ultsonch.2011.12.007
  29. Mascolo, M.C., Pei, Y. and Ring, T.A. (2013), "Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases", Mater., 6(12), 5549-5567. https://doi.org/10.3390/ma6125549
  30. Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H. and Hyeon, T. (2005), "One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles", Angew. Chem. Int. Ed., 44(19), 2872-2877. https://doi.org/10.1002/anie.200461665
  31. Park, J., An, K., Hwang, Y., Park, J., Noh, H., Kim, J., Park, J., Hwang, N. and Hyeon, T. (2004), "Ultralarge-scale syntheses of monodisperse nanocrystals", Nat. Mater., 3, 891-895. https://doi.org/10.1038/nmat1251
  32. Parkinson, G.S., Novotny, Z., Jacobson, P., Schmid, M. and Diebold, U. (2011), "Room temperature water splitting at the surface of magnetite", J. Am. Chem. Soc., 133(32), 12650-12655. https://doi.org/10.1021/ja203432e
  33. Ravikumar, C. and Bandyopadhyaya, R. (2011), "Mechanistic study on magnetite nanoparticle formation by thermal decomposition and coprecipitation routes", J. Phys. Chem. C, 115(5), 1380-1387.
  34. Roullin, V.G., Deverre, J.R., Lemaire, L., Hindre, F., Venier-Julienne, M.C., Vienet, R. and Benoit, J.P. (2002), "Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres", Eur. J. Pharm. Biopharm., 53(3), 293-299. https://doi.org/10.1016/S0939-6411(02)00011-5
  35. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotty, R.A., Rouquerol, J. and Siemieniewska, T. (1985), "Reporting physisorpyion data for gas/solid systems. With special reference to determination of surface area and porosity (recommendations 1984)", Pure Appl. Chem., 57(4), 603-619.
  36. Song, Y., Wang, R., Rong, R., Ding, J., Liu, J., Li, R., Liu, Z., Li, H., Wang, X., Zhang, J. and Fang, J. (2011), "Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as an MRI contrast agent for the reticuloendothelial system", Eur. J. Inorg. Chem., 2011(22), 3303-3313. https://doi.org/10.1002/ejic.201100017
  37. Sun, X., Zheng, C., Zhang, F., Yang, Y., Wu, G., Yu, A. and Guan, N. (2009), "Size-controlled synthesis of magnetite ($Fe_3O_4$) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method", J. Phys. Chem. C, 113(36), 16002-16008.
  38. Wu, W., He, Q., Chen, H., Tang, J. and Nie, L. (2007), "Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles", Nanotech., 18(14), 145609-145617. https://doi.org/10.1088/0957-4484/18/14/145609
  39. Xu, Z., Li, C., Kang, X., Yang, D., Yang, P., Hou, Z. and Lin, J. (2010), "Synthesis of a multifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties", J. Phys. Chem. C, 114(39), 16343-16350. https://doi.org/10.1021/jp106325c
  40. Xuang, S., Wang, F., Lai, J.M.Y., Sham, K.W.Y., Wang, Y.X.J., Lee, S.F., Yu, J.C., Cheng, C.H.K. and Leung, K.C.F. (2011), "Synthesis of biocompatible, mesoporous $Fe_3O_4$ nano/microspheres with large surface area for magnetic resonance imaging and therapeutic application", ACS Appl. Mater. Interf., 3, 237-244. https://doi.org/10.1021/am1012358
  41. Yu, B.Y. and Kwak, S.Y. (2011), "Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinelnanocrystals prepared using a template-free approach", Dalton Trans., 40(39), 9989-9998. https://doi.org/10.1039/c1dt10650c
  42. Zhao, S.Y., Lee, D.K., Kim, C.W., Cha, H.G., Kim, Y.H. and Kang, Y.S. (2006), "Synthesis of magnetic nanoparticles of $Fe_3O_4$ and $CoFe_2O_4$ and their surface modification by surfactant adsorption", Bull. Korean Chem. Soc., 27(2), 237-242. https://doi.org/10.5012/bkcs.2006.27.2.237
  43. Zhu, M. and Diao, G. (2011), "Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange", J. Phys. Chem. C, 115(39), 18923-18934. https://doi.org/10.1021/jp200418j

Cited by

  1. Crossover magnetic amphiprotic catalysts for oil/water separation, the purification of aqueous and non-aqueous pollutants, and organic synthesis vol.331, 2018, https://doi.org/10.1016/j.cej.2017.08.120
  2. Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle 2018, https://doi.org/10.1007/s10948-017-4428-3
  3. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment vol.7, pp.12, 2017, https://doi.org/10.3390/nano7120426
  4. Tunable Synthesis of Hierarchical Superparamagnetic Fe3O4 Nanospheres by a Surfactant-Free Solvothermal Method 2018, https://doi.org/10.1007/s10948-017-4533-3
  5. Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method pp.1573-4803, 2018, https://doi.org/10.1007/s10853-018-3030-9
  6. An anti-overturn Janus sponge with excellent floating stability for simultaneous pollutant remediation and oil/water separation vol.6, pp.34, 2018, https://doi.org/10.1039/C8TA04462G
  7. Synthesis and Properties of Mesoporous Maghemite vol.133, pp.4, 2018, https://doi.org/10.12693/APhysPolA.133.1035
  8. On the preparation and characterization of superparamagnetic nanoparticles with Gelidium robustum agar coating for biomedical applications vol.41, pp.2, 2018, https://doi.org/10.1007/s12034-018-1546-x
  9. A lottery draw machine-inspired movable air filter with high removal efficiency and low pressure drop at a high flow rate vol.7, pp.11, 2014, https://doi.org/10.1039/c9ta00100j
  10. Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method vol.6, pp.12, 2014, https://doi.org/10.1088/2053-1591/ab65e0
  11. Preparation and Characterization of Magnetic Biochar Nanocomposites via a Modified Solvothermal Method and Their Use as Efficient Heterogeneous Fenton-like Catalysts vol.59, pp.5, 2014, https://doi.org/10.1021/acs.iecr.9b04590
  12. Magnetic Fe3O4-Ag0 Nanocomposites for Effective Mercury Removal from Water vol.12, pp.13, 2020, https://doi.org/10.3390/su12135489
  13. Synthesis, Electrochemical Studies, and Antimicrobial Properties of Fe 3 O 4 Nanoparticles from Callistemon viminalis Plant Extracts vol.13, pp.21, 2014, https://doi.org/10.3390/ma13214894
  14. Study of the adsorption activity of Fe3O4 synthesized by the solvothermal method in relation to doxorubicin vol.10, pp.12, 2014, https://doi.org/10.1007/s13204-020-01417-8
  15. The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-96465-7
  16. Polystyrene magnetic nanocomposite blend: An effective, facile, and economical alternative in oil spill removal applications vol.286, pp.p2, 2014, https://doi.org/10.1016/j.chemosphere.2021.131611